Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
EMBO J ; 40(10): e106503, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33934390

RESUMO

The primary cilium is a microtubule-based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X-linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin-proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G-protein-coupled receptor (GPCR)-cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2-UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non-phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Oryzias , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
2.
EMBO Rep ; 24(4): e55571, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36744302

RESUMO

Bardet-Biedl syndrome (BBS) is a ciliopathy characterized by retinal degeneration, obesity, renal abnormalities, postaxial polydactyly, and developmental defects. Genes mutated in BBS encode for components and regulators of the BBSome, an octameric complex that controls the trafficking of cargos and receptors within the primary cilium. Although both structure and function of the BBSome have been extensively studied, the impact of ubiquitin signaling on BBSome is largely unknown. We identify the E3 ubiquitin ligase PJA2 as a novel resident of the ciliary compartment and regulator of the BBSome. Upon GPCR-cAMP stimulation, PJA2 ubiquitylates BBSome subunits. We demonstrate that ubiquitylation of BBS1 at lysine 143 increases the stability of the BBSome and promotes its binding to BBS3, an Arf-like GTPase protein controlling the targeting of the BBSome to the ciliary membrane. Downregulation of PJA2 or expression of a ubiquitylation-defective BBS1 mutant (BBS1K143R ) affects the trafficking of G-protein-coupled receptors (GPCRs) and Shh-dependent gene transcription. Expression of BBS1K143R in vivo impairs cilium formation, embryonic development, and photoreceptors' morphogenesis, thus recapitulating the BBS phenotype in the medaka fish model.


Assuntos
Síndrome de Bardet-Biedl , Cílios , Animais , Cílios/metabolismo , Transporte Proteico , Transdução de Sinais , Síndrome de Bardet-Biedl/genética , Receptores Acoplados a Proteínas G/genética , Ubiquitinação
3.
Cell Mol Life Sci ; 80(11): 323, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819449

RESUMO

BACKGROUND: The functional contribution of non-myocyte cardiac cells, such as inflammatory cells, in the setup of heart failure in response to doxorubicin (Dox) is recently becoming of growing interest. OBJECTIVES: The study aims to evaluate the role of macrophages in cardiac damage elicited by Dox treatment. METHODS: C57BL/6 mice were treated with one intraperitoneal injection of Dox (20 mg/kg) and followed up for 5 days by cardiac ultrasounds (CUS), histological, and flow cytometry evaluations. We also tested the impact of Dox in macrophage-depleted mice. Rat cardiomyoblasts were directly treated with Dox (D-Dox) or with a conditioned medium from cultured murine macrophages treated with Dox (M-Dox). RESULTS: In response to Dox, macrophage infiltration preceded cardiac damage. Macrophage depletion prevents Dox-induced damage, suggesting a key role of these cells in promoting cardiotoxicity. To evaluate the crosstalk between macrophages and cardiac cells in response to DOX, we compared the effects of D-Dox and M-Dox in vitro. Cell vitality was lower in cardiomyoblasts and apoptosis was higher in response to M-Dox compared with D-Dox. These events were linked to p53-induced mitochondria morphology, function, and autophagy alterations. We identify a mechanistic role of catecholamines released by Dox-activated macrophages that lead to mitochondrial apoptosis of cardiac cells through ß-AR stimulation. CONCLUSIONS: Our data indicate that crosstalk between macrophages and cardiac cells participates in cardiac damage in response to Dox.


Assuntos
Catecolaminas , Doxorrubicina , Ratos , Camundongos , Animais , Catecolaminas/metabolismo , Camundongos Endogâmicos C57BL , Doxorrubicina/efeitos adversos , Apoptose , Miócitos Cardíacos/metabolismo , Macrófagos , Estresse Oxidativo
4.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887048

RESUMO

Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.


Assuntos
Proteínas de Ancoragem à Quinase A , Cardiologia , Proteínas de Ancoragem à Quinase A/metabolismo , AMP Cíclico/metabolismo , Coração , Mitocôndrias/metabolismo , Biologia Molecular
5.
Biochim Biophys Acta Rev Cancer ; 1869(2): 293-302, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29673970

RESUMO

Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders. Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.


Assuntos
Compartimento Celular , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/uso terapêutico , AMP Cíclico/metabolismo , Metabolismo Energético , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mitofagia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Biogênese de Organelas , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Sistemas do Segundo Mensageiro , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação
6.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360942

RESUMO

The exact mechanism underlying selective dopaminergic neurodegeneration is not completely understood. The complex interplay among toxic alpha-synuclein aggregates, oxidative stress, altered intracellular Ca2+-homeostasis, mitochondrial dysfunction and disruption of mitochondrial integrity is considered among the pathogenic mechanisms leading to dopaminergic neuronal loss. We herein investigated the molecular mechanisms leading to mitochondrial dysfunction and its relationship with activation of the neuroinflammatory process occurring in Parkinson's disease. To address these issues, experiments were performed in vitro and in vivo in mice carrying the human mutation of α-synuclein A53T under the prion murine promoter. In these models, the expression and activity of NCX isoforms, a family of important transporters regulating ionic homeostasis in mammalian cells working in a bidirectional way, were evaluated in neurons and glial cells. Mitochondrial function was monitored with confocal microscopy and fluorescent dyes to measure mitochondrial calcium content and mitochondrial membrane potential. Parallel experiments were performed in 4 and 16-month-old A53T-α-synuclein Tg mice to correlate the functional data obtained in vitro with mitochondrial dysfunction and neuroinflammation through biochemical analysis. The results obtained demonstrated: 1. in A53T mice mitochondrial dysfunction occurs early in midbrain and later in striatum; 2. mitochondrial dysfunction occurring in the midbrain is mediated by the impairment of NCX3 protein expression in neurons and astrocytes; 3. mitochondrial dysfunction occurring early in midbrain triggers neuroinflammation later into the striatum, thus contributing to PD progression during mice aging.


Assuntos
Mesencéfalo/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Trocador de Sódio e Cálcio/metabolismo , alfa-Sinucleína/genética , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Trocador de Sódio e Cálcio/genética , alfa-Sinucleína/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(44): 15729-34, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331889

RESUMO

Protein kinase A (PKA) controls major aspects of neurite outgrowth and morphogenesis and plays an essential role in synaptic plasticity and memory. However, the molecular mechanism(s) of PKA action on neurite sprouting and activity are still unknown. Here, we report that in response to neurotrophin or cAMP stimulation the RING ligase praja2 ubiquitinates and degrades NOGO-A, a major inhibitor of neurite outgrowth in mammalian brain. Genetic silencing of praja2 severely inhibited neurite extension of differentiating neuroblastoma cells and mesencephalic neurons and axon outgrowth and sprouting of striatal terminals in developing rat brain. This phenotype was rescued when both praja2 and NOGO-A were depleted, suggesting that NOGO-A is, indeed, a biologically relevant target of praja2 in neuronal cells. Our findings unveil a novel mechanism that functionally couples cAMP signaling with the proteolytic turnover of NOGO-A, positively impacting on neurite outgrowth in mammalian brain.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Mesencéfalo/metabolismo , Proteínas da Mielina/metabolismo , Neuritos/metabolismo , Proteólise , Animais , Axônios/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Mesencéfalo/citologia , Proteínas da Mielina/genética , Proteínas Nogo , Ratos , Ratos Wistar , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
J Cell Sci ; 126(Pt 24): 5566-77, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24101730

RESUMO

The mitochondrial influx and efflux of Ca(2+) play a relevant role in cytosolic and mitochondrial Ca(2+) homeostasis, and contribute to the regulation of mitochondrial functions in neurons. The mitochondrial Na(+)/Ca(2+) exchanger, which was first postulated in 1974, has been primarily investigated only from a functional point of view, and its identity and localization in the mitochondria have been a matter of debate over the past three decades. Recently, a Li(+)-dependent Na(+)/Ca(2+) exchanger extruding Ca(2+) from the matrix has been found in the inner mitochondrial membrane of neuronal cells. However, evidence has been provided that the outer membrane is impermeable to Ca(2+) efflux into the cytoplasm. In this study, we demonstrate for the first time that the nuclear-encoded NCX3 isoform (1) is located on the outer mitochondrial membrane (OMM) of neurons; (2) colocalizes and immunoprecipitates with AKAP121 (also known as AKAP1), a member of the protein kinase A anchoring proteins (AKAPs) present on the outer membrane; (3) extrudes Ca(2+) from mitochondria through AKAP121 interaction in a PKA-mediated manner, both under normoxia and hypoxia; and (4) improves cell survival when it works in the Ca(2+) efflux mode at the level of the OMM. Collectively, these results suggest that, in neurons, NCX3 regulates mitochondrial Ca(2+) handling from the OMM through an AKAP121-anchored signaling complex, thus promoting cell survival during hypoxia.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Cálcio/metabolismo , Neurônios/fisiologia , Trocador de Sódio e Cálcio/fisiologia , Animais , Morte Celular , Hipóxia Celular , Linhagem Celular , Sobrevivência Celular , Cricetinae , Cães , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Ratos
10.
iScience ; 27(3): 108959, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361619

RESUMO

Mucopolysaccharidoses (MPSs) are lysosomal disorders with neurological involvement for which no cure exists. Here, we show that recombinant NK1 fragment of hepatocyte growth factor rescues substrate accumulation and lysosomal defects in MPS I, IIIA and IIIB patient fibroblasts. We investigated PI3K/Akt pathway, which is of crucial importance for neuronal function and survival, and demonstrate that PI3K inhibition abolishes NK1 therapeutic effects. We identified that autophagy inhibition, by Beclin1 silencing, reduces MPS IIIB phenotype and that NK1 downregulates autophagic-lysosome (ALP) gene expression, suggesting a possible contribution of autophagosome biogenesis in MPS. Indeed, metabolomic analyses revealed defects of mitochondrial activity accompanied by anaerobic metabolism and inhibition of AMP-activated protein kinase (AMPK), which acts on metabolism and autophagy, rescues lysosomal defects. These results provide insights into the molecular mechanisms of MPS IIIB physiopathology, supporting the development of new promising approaches based on autophagy inhibition and metabolic rewiring to correct lysosomal pathology in MPSs.

11.
Commun Biol ; 7(1): 208, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38379085

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer in the adult population. Late diagnosis, resistance to therapeutics and recurrence of metastatic lesions account for the highest mortality rate among kidney cancer patients. Identifying novel biomarkers for early cancer detection and elucidating the mechanisms underlying ccRCC will provide clues to treat this aggressive malignant tumor. Here, we report that the ubiquitin ligase praja2 forms a complex with-and ubiquitylates the AP2 adapter complex, contributing to receptor endocytosis and clearance. In human RCC tissues and cells, downregulation of praja2 by oncogenic miRNAs (oncomiRs) and the proteasome markedly impairs endocytosis and clearance of the epidermal growth factor receptor (EGFR), and amplifies downstream mitogenic and proliferative signaling. Restoring praja2 levels in RCC cells downregulates EGFR, rewires cancer cell metabolism and ultimately inhibits tumor cell growth and metastasis. Accordingly, genetic ablation of praja2 in mice upregulates RTKs (i.e. EGFR and VEGFR) and induces epithelial and vascular alterations in the kidney tissue.In summary, our findings identify a regulatory loop between oncomiRs and the ubiquitin proteasome system that finely controls RTKs endocytosis and clearance, positively impacting mitogenic signaling and kidney cancer growth.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Adulto , Animais , Humanos , Camundongos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Regulação para Baixo , Endocitose , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores Proteína Tirosina Quinases/genética , Ubiquitina/metabolismo
12.
Adv Exp Med Biol ; 961: 203-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23224881

RESUMO

Mitochondria are now recognized as one of the main intracellular calcium-storing organelles which play a key role in the intracellular calcium signalling. Indeed, besides performing oxidative phosphorylation, mitochondria are able to sense and shape calcium (Ca(2+)) transients, thus controlling cytosolic Ca(2+) signals and Ca(2+)-dependent protein activity. It has been well established for many years that mitochondria have a huge capacity to accumulate calcium. While the physiological significance of this pathway was hotly debated until relatively recently, it is now clear that the ability of mitochondria in calcium handling is a ubiquitous phenomenon described in every cell system in which the issue has been addressed.In this chapter, we will review the molecular mechanisms involved in the regulation of mitochondrial calcium cycling in physiological conditions with particular regard to the role played by the mitochondrial Na(+)/Ca(2+) exchanger.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Trocador de Sódio e Cálcio/metabolismo , Animais , Humanos , Proteínas Mitocondriais/genética , Trocador de Sódio e Cálcio/genética
13.
Cells ; 12(2)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36672167

RESUMO

Cellular homeostasis is tightly connected to the broad variety of mitochondrial functions. To stay healthy, cells need a constant supply of nutrients, energy production and antioxidants defenses, undergoing programmed death when a serious, irreversible damage occurs. The key element of a functional integration of all these processes is the correct crosstalk between cell signaling and mitochondrial activities. Once this crosstalk is interrupted, the cell is not able to communicate its needs to mitochondria, resulting in oxidative stress and development of pathological conditions. Conversely, dysfunctional mitochondria may affect cell viability, even in the presence of nutrients supply and energy production, indicating the existence of feed-back control mechanisms between mitochondria and other cellular compartments. The ubiquitin proteasome system (UPS) is a multi-step biochemical pathway that, through the conjugation of ubiquitin moieties to specific protein substrates, controls cellular proteostasis and signaling, removing damaged or aged proteins that might otherwise accumulate and affect cell viability. In response to specific needs or changed extracellular microenvironment, the UPS modulates the turnover of mitochondrial proteins, thus influencing the organelle shape, dynamics and function. Alterations of the dynamic and reciprocal regulation between mitochondria and UPS underpin genetic and proliferative disorders. This review focuses on the mitochondrial metabolism and activities supervised by UPS and examines how deregulation of this control mechanism results in proliferative disorders and cancer.


Assuntos
Neoplasias , Ubiquitina , Humanos , Idoso , Ubiquitina/metabolismo , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
14.
EMBO J ; 27(7): 1073-84, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18323779

RESUMO

A-kinase anchor protein 121 (AKAP121) assembles a multivalent signalling complex on the outer mitochondrial membrane that controls persistence and amplitude of cAMP and src signalling to mitochondria, and plays an essential role in oxidative metabolism and cell survival. Here, we show that AKAP121 levels are regulated post-translationally by the ubiquitin/proteasome pathway. Seven In-Absentia Homolog 2 (Siah2), an E3-ubiquitin ligase whose expression is induced in hypoxic conditions, formed a complex and degraded AKAP121. In addition, we show that overexpression of Siah2 or oxygen and glucose deprivation (OGD) promotes Siah2-mediated ubiquitination and proteolysis of AKAP121. Upregulation of Siah2, by modulation of the cellular levels of AKAP121, significantly affects mitochondrial activity assessed as mitochondrial membrane potential and oxidative capacity. Also during cerebral ischaemia, AKAP121 is degraded in a Siah2-dependent manner. These findings reveal a novel mechanism of attenuation of cAMP/PKA signaling, which occurs at the distal sites of signal generation mediated by proteolysis of an AKAP scaffold protein. By regulating the stability of AKAP121-signalling complex at mitochondria, cells efficiently and rapidly adapt oxidative metabolism to fluctuations in oxygen availability.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Isquemia Encefálica/metabolismo , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ancoragem à Quinase A/química , Animais , Hipóxia Celular , Glucose/deficiência , Humanos , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/patologia , Modelos Biológicos , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Oxigênio/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Ratos , Ratos Wistar , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Front Cell Dev Biol ; 10: 833086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646931

RESUMO

Primary cilia are microtubule-based, non-motile sensory organelles present in most types of growth-arrested eukaryotic cells. They are transduction hubs that receive and transmit external signals to the cells in order to control growth, differentiation and development. Mutations of genes involved in the formation, maintenance or disassembly of ciliary structures cause a wide array of developmental genetic disorders, also known as ciliopathies. The primary cilium is formed during G1 in the cell cycle and disassembles at the G2/M transition. Following the completion of the cell division, the cilium reassembles in G1. This cycle is finely regulated at multiple levels. The ubiquitin-proteasome system (UPS) and the autophagy machinery, two main protein degradative systems in cells, play a fundamental role in cilium dynamics. Evidence indicate that UPS, autophagy and signaling pathways may act in synergy to control the ciliary homeostasis. However, the mechanisms involved and the links between these regulatory systems and cilium biogenesis, dynamics and signaling are not well defined yet. Here, we discuss the reciprocal regulation of signaling pathways and proteolytic machineries in the control of the assembly and disassembly of the primary cilium, and the impact of the derangement of these regulatory networks in human ciliopathies.

16.
Commun Biol ; 5(1): 780, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918402

RESUMO

Glioblastoma multiforme (GBM) is the most frequent and aggressive form of primary brain tumor in the adult population; its high recurrence rate and resistance to current therapeutics urgently demand a better therapy. Regulation of protein stability by the ubiquitin proteasome system (UPS) represents an important control mechanism of cell growth. UPS deregulation is mechanistically linked to the development and progression of a variety of human cancers, including GBM. Thus, the UPS represents a potentially valuable target for GBM treatment. Using an integrated approach that includes proteomics, transcriptomics and metabolic profiling, we identify praja2, a RING E3 ubiquitin ligase, as the key component of a signaling network that regulates GBM cell growth and metabolism. Praja2 is preferentially expressed in primary GBM lesions expressing the wild-type isocitrate dehydrogenase 1 gene (IDH1). Mechanistically, we found that praja2 ubiquitylates and degrades the kinase suppressor of Ras 2 (KSR2). As a consequence, praja2 restrains the activity of downstream AMP-dependent protein kinase in GBM cells and attenuates the oxidative metabolism. Delivery in the brain of siRNA targeting praja2 by transferrin-targeted self-assembling nanoparticles (SANPs) prevented KSR2 degradation and inhibited GBM growth, reducing the size of the tumor and prolonging the survival rate of treated mice. These data identify praja2 as an essential regulator of cancer cell metabolism, and as a potential therapeutic target to suppress GBM growth.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina
17.
J Biol Chem ; 285(50): 39260-70, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20923765

RESUMO

PTPD1, a cytosolic non-receptor protein-tyrosine phosphatase, stimulates the Src-EGF transduction pathway. Localization of PTPD1 at actin cytoskeleton and adhesion sites is required for cell scattering and migration. Here, we show that during EGF stimulation, PTPD1 is rapidly recruited to endocytic vesicles containing the EGF receptor. Endosomal localization of PTPD1 is mediated by interaction with KIF16B, an endosomal kinesin that modulates receptor recycling at the plasma membrane. Silencing of PTPD1 promotes degradation of EGF receptor and inhibits downstream ERK signaling. We also found that PTPD1 is markedly increased in bladder cancer tissue samples. PTPD1 levels positively correlated with the grading and invasiveness potential of these tumors. Transgenic expression of an inactive PTPD1 mutant or genetic knockdown of the endogenous PTPD1 severely inhibited both growth and motility of human bladder cancer cells. These findings identify PTPD1 as a novel component of the endocytic machinery that impacts on EGF receptor stability and on growth and motility of bladder cancer cells.


Assuntos
Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Actinas/química , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Citoesqueleto/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Cinesinas/química , Invasividade Neoplásica , Transdução de Sinais
18.
Antioxidants (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34679737

RESUMO

GATA-1 is a key regulator of hematopoiesis. A balanced ratio of its two isoforms, GATA-1FL and GATA-1S, contributes to normal hematopoiesis, whereas aberrant expression of GATA-1S alters the differentiation/proliferation potential of hematopoietic precursors and represents a poor prognostic factor in myeloid leukemia. We previously reported that GATA-1S over-expression correlates with high levels of the succinate dehydrogenase subunit C (SDHC). Alternative splicing variants of the SDHC transcript are over-expressed in several tumors and act as potent dominant negative inhibitors of SDH activity. With this in mind, we investigated the levels of SDHC variants and the oxidative mitochondrial metabolism in myeloid leukemia K562 cells over-expressing GATA-1 isoforms. Over-expression of SDHC variants accompanied by decreased SDH complex II activity and oxidative phosphorylation (OXPHOS) efficiency was found associated only with GATA-1S. Given the tumor suppressor role of SDH and the effects of OXPHOS limitations in leukemogenesis, identification of a link between GATA-1S and impaired complex II activity unveils novel pro-leukemic mechanisms triggered by GATA-1S. Abnormal levels of GATA-1S and SDHC variants were also found in an acute myeloid leukemia patient, thus supporting in vitro results. A better understanding of these mechanisms can contribute to identify novel promising therapeutic targets in myeloid leukemia.

19.
Front Aging Neurosci ; 12: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372945

RESUMO

The loss of dopaminergic (DA) neurons in the substantia nigra leads to a progressive, long-term decline of movement and other non-motor deficits. The symptoms of Parkinson's disease (PD) often appear later in the course of the disease, when most of the functional dopaminergic neurons have been lost. The late onset of the disease, the severity of the illness, and its impact on the global health system demand earlier diagnosis and better targeted therapy. PD etiology and pathogenesis are largely unknown. There are mutations in genes that have been linked to PD and, from these complex phenotypes, mitochondrial dysfunction emerged as central in the pathogenesis and evolution of PD. In fact, several PD-associated genes negatively impact on mitochondria physiology, supporting the notion that dysregulation of mitochondrial signaling and homeostasis is pathogenically relevant. Derangement of mitochondrial homeostatic controls can lead to oxidative stress and neuronal cell death. Restoring deranged signaling cascades to and from mitochondria in PD neurons may then represent a viable opportunity to reset energy metabolism and delay the death of dopaminergic neurons. Here, we will highlight the relevance of dysfunctional mitochondrial homeostasis and signaling in PD, the molecular mechanisms involved, and potential therapeutic approaches to restore mitochondrial activities in damaged neurons.

20.
Cell Calcium ; 87: 102193, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32193001

RESUMO

Mitochondria are highly dynamic organelles extremely important for cell survival. Their structure resembles that of prokaryotic cells since they are composed with two membranes, the inner (IMM) and the outer mitochondrial membrane (OMM) delimitating the intermembrane space (IMS) and the matrix which contains mitochondrial DNA (mtDNA). This structure is strictly related to mitochondrial function since they produce the most of the cellular ATP through the oxidative phosphorylation which generate the electrochemical gradient at the two sides of the inner mitochondrial membrane an essential requirement for mitochondrial function. Cells of highly metabolic demand like those composing muscle, liver and brain, are particularly dependent on mitochondria for their activities. Mitochondria undergo to continual changes in morphology since, they fuse and divide, branch and fragment, swell and extend. Importantly, they move throughout the cell to deliver ATP and other metabolites where they are mostly required. Along with the capability to control energy metabolism, mitochondria play a critical role in the regulation of many physiological processes such as programmed cell death, autophagy, redox signalling, and stem cells reprogramming. All these phenomena are regulated by Ca2+ ions within this organelle. This review will discuss the molecular mechanisms regulating mitochondrial calcium cycling in physiological and pathological conditions with particular regard to their impact on mitochondrial dynamics and function during ischemia. Particular emphasis will be devoted to the role played by NCX3 and AKAP121 as new molecular targets for mitochondrial function and dysfunction.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Cálcio/metabolismo , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Trocador de Sódio e Cálcio/metabolismo , Animais , Hipóxia Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA