Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Biomed Sci ; 26(1): 25, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30866950

RESUMO

BACKGROUND: Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most effective chemotherapeutic agents. However, its clinical use is limited due to the severe side effects, including nephrotoxicity and acute kidney injury (AKI) which develop due to renal accumulation and biotransformation of CDDP. The alleviation or prevention of CDDP-caused nephrotoxicity is currently accomplished by hydration, magnesium supplementation or mannitol-induced forced diuresis which is considered for high-dose CDDP-treated patients. However, mannitol treatment causes over-diuresis and consequent dehydration in CDDP-treated patients, indicating an urgent need for the clinical use of safe and efficacious renoprotective drug as an additive therapy for high dose CDDP-treated patients. MAIN BODY: In this review article we describe in detail signaling pathways involved in CDDP-induced apoptosis of renal tubular cells, oxidative stress and inflammatory response in injured kidneys in order to pave the way for the design of new therapeutic approaches that can minimize CDDP-induced nephrotoxicity. Most of these molecular pathways are, at the same time, crucially involved in cytotoxic activity of CDDP against tumor cells and potential alterations in their function might mitigate CDDP-induced anti-tumor effects. CONCLUSION: Despite the fact that many molecules were designated as potential therapeutic targets for renoprotection against CDDP, modulation of CDDP-induced nephrotoxicity still represents a balance on the knife edge between renoprotection and tumor toxicity.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Células Epiteliais/efeitos dos fármacos , Rim/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/fisiologia , Humanos , Inflamação/induzido quimicamente , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ratos
2.
Adv Exp Med Biol ; 1084: 187-206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31175638

RESUMO

Mesenchymal stem cells (MSCs) are self-renewable cells capable for multilineage differentiation and immunomodulation. MSCs are able to differentiate into all cell types of mesodermal origin and, due to their plasticity, may generate cells of neuroectodermal or endodermal origin in vitro. In addition to the enormous differentiation potential, MSCs efficiently modulate innate and adaptive immune response and, accordingly, were used in large number of experimental and clinical trials as new therapeutic agents in regenerative medicine. Although MSC-based therapy was efficient in the treatment of many inflammatory and degenerative diseases, unwanted differentiation of engrafted MSCs represents important safety concern. MSC-based beneficial effects are mostly relied on the effects of MSC-derived immunomodulatory, pro-angiogenic, and trophic factors which attenuate detrimental immune response and inflammation, reduce ischemic injuries, and promote tissue repair and regeneration. Accordingly, MSC-conditioned medium (MSC-CM), which contains MSC-derived factors, has the potential to serve as a cell-free, safe therapeutic agent for the treatment of inflammatory diseases. Herein, we summarized current knowledge regarding identification, isolation, ontogeny, and functional characteristics of MSCs and described molecular mechanisms responsible for MSC-CM-mediated anti-inflammatory and immunosuppressive effects in the therapy of inflammatory lung, liver, and kidney diseases and ischemic brain injury.


Assuntos
Células-Tronco Mesenquimais , Fator de Células-Tronco , Anti-Inflamatórios/farmacologia , Meios de Cultivo Condicionados , Imunomodulação/efeitos dos fármacos , Imunossupressores/farmacologia , Células-Tronco Mesenquimais/química , Fator de Células-Tronco/química , Fator de Células-Tronco/farmacologia
3.
Liver Transpl ; 24(5): 687-702, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29500914

RESUMO

One of the therapeutic options for the treatment of fulminant hepatitis is repopulation of intrahepatic regulatory cells because their pool is significantly reduced during acute liver failure. Although it is known that mesenchymal stem cells (MSCs), which have beneficent effects in the therapy of fulminant hepatitis, may promote expansion of regulatory T cells (Tregs) and regulatory B cells (Bregs), the role of these regulatory cells in MSC-mediated attenuation of acute liver injury is unknown. Herewith, we described the molecular mechanisms involved in the crosstalk between MSCs and liver regulatory cells and analyzed the potential of MSC-based therapy for the expansion of intrahepatic regulatory cells in mouse model of acute liver failure. MSC-dependent attenuation of α-galactosylceramide (α-GalCer)-induced acute liver injury in mice was accompanied with an increased presence of interleukin (IL) 10-producing CD4+ CD25+ forkhead box P3+ Tregs and IL10- and transforming growth factor ß-producing marginal zone-like Bregs in the liver. Depletion of Bregs did not alter MSC-based alleviation of acute liver failure, whereas depletion of Tregs completely abrogated hepatoprotective effects of MSCs and inhibited their capacity to attenuate hepatotoxicity of liver natural killer T cells (NKTs), indicating that Tregs, and not Bregs, were critically involved in MSC-based modulation of acute liver inflammation. MSCs, in a paracrine, indoleamine 2,3-dioxygenase-dependent manner, significantly increased the capacity of Tregs to produce immunosuppressive IL10 and to suppress hepatotoxicity of liver NKTs. Accordingly, adoptive transfer of MSC-primed Tregs resulted in the complete attenuation of α-GalCer-induced acute liver failure. In conclusion, our findings highlighted the crucial importance of Tregs for MSC-based attenuation of acute liver failure and indicated the significance of MSC-mediated priming of Tregs as a new therapeutic approach in Treg-based therapy of acute liver injury. Liver Transplantation 24 687-702 2018 AASLD.


Assuntos
Transferência Adotiva , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/imunologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Comunicação Parácrina , Linfócitos T Reguladores/transplante , Animais , Proliferação de Células , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Galactosilceramidas , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Fígado/metabolismo , Fígado/patologia , Ativação Linfocitária , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
4.
J Biomed Sci ; 25(1): 21, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29519245

RESUMO

BACKGROUND: Pericytes are multipotent cells present in every vascularized tissue in the body. Despite the fact that they are well-known for more than a century, pericytes are still representing cells with intriguing properties. This is mainly because of their heterogeneity in terms of definition, tissue distribution, origin, phenotype and multi-functional properties. The body of knowledge illustrates importance of pericytes in the regulation of homeostatic and healing processes in the body. MAIN BODY: In this review, we summarized current knowledge regarding identification, isolation, ontogeny and functional characteristics of pericytes and described molecular mechanisms involved in the crosstalk between pericytes and endothelial or immune cells. We highlighted the role of pericytes in the pathogenesis of fibrosis, diabetes-related complications (retinopathy, nephropathy, neuropathy and erectile dysfunction), ischemic organ failure, pulmonary hypertension, Alzheimer disease, tumor growth and metastasis with the focus on their therapeutic potential in the regenerative medicine. The functions and capabilities of pericytes are impressive and, as yet, incompletely understood. Molecular mechanisms responsible for pericyte-mediated regulation of vascular stability, angiogenesis and blood flow are well described while their regenerative and immunomodulatory characteristics are still not completely revealed. Strong evidence for pericytes' participation in physiological, as well as in pathological conditions reveals a broad potential for their therapeutic use. Recently published results obtained in animal studies showed that transplantation of pericytes could positively influence the healing of bone, muscle and skin and could support revascularization. However, the differences in their phenotype and function as well as the lack of standardized procedure for their isolation and characterization limit their use in clinical trials. CONCLUSION: Critical to further progress in clinical application of pericytes will be identification of tissue specific pericyte phenotype and function, validation and standardization of the procedure for their isolation that will enable establishment of precise clinical settings in which pericyte-based therapy will be efficiently applied.


Assuntos
Progressão da Doença , Pericitos/fisiologia , Medicina Regenerativa/métodos , Animais , Humanos , Pericitos/classificação , Pericitos/metabolismo
5.
Int J Med Sci ; 15(3): 274-279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483819

RESUMO

The standard sterilization method for most medical devices over the past 40 years involves gamma irradiation. During sterilization, gamma rays efficiently eliminate microorganisms from the medical devices and tissue allografts, but also significantly change molecular structure of irradiated products, particularly fragile biologics such as cytokines, chemokines and growth factors. Accordingly, gamma radiation significantly alters biomechanical properties of bone, tendon, tracheal, skin, amnion tissue grafts and micronized amniotic membrane injectable products. Similarly, when polymer medical devices are sterilized by gamma radiation, their physico-chemical characteristics undergo modification significantly affecting their clinical use. Several animal studies demonstrated that consummation of irradiated food provoked genome instability raising serious concerns regarding oncogenic potential of irradiated consumables. These findings strongly suggest that new, long-term, prospective clinical studies should be conducted in near future to investigate whether irradiated food is safe for human consumption. In this review, we summarized current knowledge regarding molecular mechanisms responsible for deleterious effects of gamma radiation with focusing on its significance for food safety and biomechanical characteristics of medical devices, and tissue allografts, especially injectable biologics.


Assuntos
Armazenamento de Alimentos , Raios gama/efeitos adversos , Polímeros/efeitos da radiação , Esterilização , Animais , Equipamentos e Provisões , Instabilidade Genômica/efeitos dos fármacos , Humanos , Polímeros/efeitos adversos , Polímeros/química
6.
Adv Exp Med Biol ; 1089: 47-57, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774506

RESUMO

Mesenchymal stem cells (MSCs) were, due to their immunomodulatory and pro-angiogenic characteristics, extensively explored as new therapeutic agents in cell-based therapy of uveitis, glaucoma, retinal and ocular surface diseases.Since it was recently revealed that exosomes play an important role in biological functions of MSCs, herewith we summarized current knowledge about the morphology, structure, phenotype and functional characteristics of MSC-derived exosomes emphasizing their therapeutic potential in the treatment of eye diseases.MSC-derived exosomes were as efficient as transplanted MSCs in limiting the extent of eye injury and inflammation. Immediately after intravitreal injection, MSC-derived exosomes, due to nano-dimension, diffused rapidly throughout the retina and significantly attenuated retinal damage and inflammation. MSC-derived exosomes successfully delivered trophic and immunomodulatory factors to the inner retina and efficiently promoted survival and neuritogenesis of injured retinal ganglion cells. MSC-derived exosomes efficiently suppressed migration of inflammatory cells, attenuated detrimental Th1 and Th17 cell-driven immune response and ameliorated experimental autoimmune uveitis. MSC-derived exosomes were able to fuse with the lysosomes within corneal cells, enabling delivering of MSC-derived active ß-glucuronidase and consequent catabolism of accumulated glycosaminoglycans, indicating their therapeutic potential in the treatment of Mucopolysaccharidosis VII (Sly Syndrome). Importantly, beneficent effects were noticed only in animals that received MSC-derived exosomes and were not seen after therapy with fibroblasts-derived exosomes confirming specific therapeutic potential of MSCs and their products in the treatment of eye diseases.In conclusion, MSC-derived exosomes represent potentially new therapeutic agents in the therapy of degenerative and inflammatory ocular diseases.


Assuntos
Exossomos/transplante , Oftalmopatias/terapia , Células-Tronco Mesenquimais/citologia , Animais , Fibroblastos , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais
7.
Int J Mol Sci ; 19(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601528

RESUMO

Spinal cord injury (SCI), a serious public health issue, most likely occurs in previously healthy young adults. Current therapeutic strategies for SCI includes surgical decompression and pharmacotherapy, however, there is still no gold standard for the treatment of this devastating condition. Inefficiency and adverse effects of standard therapy indicate that novel therapeutic strategies are required. Because of their neuroregenerative and neuroprotective properties, stem cells are a promising tool for the treatment of SCI. Herein, we summarize and discuss the promising therapeutic potential of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and ependymal stem/progenitor cells (epSPC) for SCI.


Assuntos
Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Traumatismos da Medula Espinal/metabolismo
8.
Biofactors ; 46(2): 263-275, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31755595

RESUMO

Interleukin (IL)-1 receptor antagonist (IL-1Ra), a naturally occurring antagonist of IL-1α/IL-1ß signaling pathways, has been attributed to the immunosuppressive effects of mesenchymal stem cells (MSCs). MSCs, in IL-1Ra-dependent manner, suppressed production of IL-1ß in dermal macrophages, induced their polarization in anti-inflammatory M2 phenotype, attenuated antigen-presenting properties of dendritic cells (DCs), and promoted expansion of immunosuppressive T regulatory cells in the skin, which resulted in enhanced repair of the nonhealing wounds. Reduced activation of inflammasome and suppressed production of IL-1ß in macrophages were mainly responsible for beneficial effects of MSC-derived IL-1Ra in alleviation of acute lung injury, dry eye syndrome, and corneal injury. Through the production of IL-1Ra, MSCs reduced migration of DCs to the draining lymph nodes and attenuated generation of inflammatory Th1 and Th17 cells that resulted in alleviation of fulminant hepatitis and rheumatoid arthritis. MSCs, in IL-1Ra-dependent manner, reduced liver fibrosis by suppressing production of Type I collagen in hepatic stellate cells. IL-1Ra was, at least partially, responsible for enhanced proliferation of hepatocytes and chondrocytes in MSC-treated animals with partial hepatectomy and osteoarthritis. Despite of these beneficial effects, IL-1Ra-dependent inhibition of IL-1α/IL-1ß-signaling significantly increased risk of infections. Therefore, future experimental and clinical studies should delineate potential side effects of MSC-derived IL-1Ra before IL-1Ra-overexpressing MSCs could be used as a potentially new therapeutic agent for the treatment of acute and chronic inflammatory diseases.


Assuntos
Proliferação de Células/fisiologia , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Células-Tronco Mesenquimais/imunologia , Regeneração/imunologia , Regeneração/fisiologia , Humanos , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Células-Tronco Mesenquimais/metabolismo
9.
Anal Cell Pathol (Amst) ; 2020: 3153891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257769

RESUMO

Mesenchymal stem cells (MSCs), due to their potential for differentiation into alveolar epithelial cells and their immunosuppressive characteristics, are considered a new therapeutic agent in cell-based therapy of inflammatory lung disorders, including chronic obstructive pulmonary disease (COPD). Since most of the MSC-mediated beneficent effects were the consequence of their paracrine action, herewith, we investigated the effects of a newly designed MSC-derived product "Exosome-derived Multiple Allogeneic Protein Paracrine Signaling (Exo-d-MAPPS)" in the attenuation of chronic airway inflammation by using an animal model of COPD (induced by chronic exposure to cigarette smoke (CS)) and clinical data obtained from Exo-d-MAPPS-treated COPD patients. Exo-d-MAPPS contains a high concentration of immunomodulatory factors which are capable of attenuating chronic airway inflammation, including soluble TNF receptors I and II, IL-1 receptor antagonist, and soluble receptor for advanced glycation end products. Accordingly, Exo-d-MAPPS significantly improved respiratory function, downregulated serum levels of inflammatory cytokines (TNF-α, IL-1ß, IL-12, and IFN-γ), increased serum concentration of immunosuppressive IL-10, and attenuated chronic airway inflammation in CS-exposed mice. The cellular makeup of the lungs revealed that Exo-d-MAPPS treatment attenuated the production of inflammatory cytokines in lung-infiltrated macrophages, neutrophils, and natural killer and natural killer T cells and alleviated the antigen-presenting properties of lung-infiltrated macrophages and dendritic cells (DCs). Additionally, Exo-d-MAPPS promoted the expansion of immunosuppressive IL-10-producing alternatively activated macrophages, regulatory DCs, and CD4+FoxP3+T regulatory cells in inflamed lungs which resulted in the attenuation of chronic airway inflammation. In a similar manner, as it was observed in an animal model, Exo-d-MAPPS treatment significantly improved the pulmonary status and quality of life of COPD patients. Importantly, Exo-d-MAPPS was well tolerated since none of the 30 COPD patients reported any adverse effects after Exo-d-MAPPS administration. In summing up, we believe that Exo-d-MAPPS could be considered a potentially new therapeutic agent in the treatment of chronic inflammatory lung diseases whose efficacy should be further explored in large clinical trials.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Exossomos , Inflamação/tratamento farmacológico , Pulmão/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Idoso , Animais , Exossomos/metabolismo , Feminino , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Placenta/citologia , Gravidez , Doença Pulmonar Obstrutiva Crônica/patologia
10.
Stem Cells Int ; 2019: 7869130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949441

RESUMO

Glaucoma represents a group of progressive optic neuropathies characterized by gradual loss of retinal ganglion cells (RGCs), the neurons that conduct visual information from the retina to the brain. Elevated intraocular pressure (IOP) is considered the main reason for enhanced apoptosis of RGCs in glaucoma. Currently used therapeutic agents are not able to repopulate and/or regenerate injured RGCs and, therefore, are ineffective in most patients with advanced glaucoma. Accordingly, several new therapeutic approaches, including stem cell-based therapy, have been explored for the glaucoma treatment. In this review article, we emphasized current knowledge regarding molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cells (MSCs) and their secretome in the treatment of glaucoma. MSCs produce neurotrophins and in an exosome-dependent manner supply injured RGCs with growth factors enhancing their survival and regeneration. Additionally, MSCs are able to generate functional RGC-like cells and induce proliferation of retinal stem cells. By supporting integrity of trabecular meshwork, transplanted MSCs alleviate IOP resulting in reduced loss of RGCs. Moreover, MSCs are able to attenuate T cell-driven retinal inflammation providing protection to the injured retinal tissue. In summing up, due to their capacity for neuroprotection and immunomodulation, MSCs and their secretome could be explored in upcoming clinical studies as new therapeutic agents for glaucoma treatment.

11.
Cells ; 8(5)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100966

RESUMO

Mesenchymal stem cell (MSC)-sourced secretome, defined as the set of MSC-derived bioactive factors (soluble proteins, nucleic acids, lipids and extracellular vesicles), showed therapeutic effects similar to those observed after transplantation of MSCs. MSC-derived secretome may bypass many side effects of MSC-based therapy, including unwanted differentiation of engrafted MSCs. In contrast to MSCs which had to be expanded in culture to reach optimal cell number for transplantation, MSC-sourced secretome is immediately available for treatment of acute conditions, including fulminant hepatitis, cerebral ischemia and myocardial infarction. Additionally, MSC-derived secretome could be massively produced from commercially available cell lines avoiding invasive cell collection procedure. In this review article we emphasized molecular and cellular mechanisms that were responsible for beneficial effects of MSC-derived secretomes in the treatment of degenerative and inflammatory diseases of hepatobiliary, respiratory, musculoskeletal, gastrointestinal, cardiovascular and nervous system. Results obtained in a large number of studies suggested that administration of MSC-derived secretomes represents a new, cell-free therapeutic approach for attenuation of inflammatory and degenerative diseases. Therapeutic effects of MSC-sourced secretomes relied on their capacity to deliver genetic material, growth and immunomodulatory factors to the target cells enabling activation of anti-apoptotic and pro-survival pathways that resulted in tissue repair and regeneration.


Assuntos
Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Regeneração , Medicina Regenerativa/métodos , Via Secretória/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Inflamação/terapia , Transplante de Células-Tronco Mesenquimais , Camundongos
12.
Biomed Pharmacother ; 109: 2318-2326, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551490

RESUMO

Osteoarthritis (OA) is a chronic, prevalent, debilitating joint disease characterized by progressive cartilage degradation, subchondral bone remodeling, bone marrow lesions, meniscal damage, and synovitis. Innate immune cells (natural killer cells, macrophages, and mast cells) play the most important pathogenic role in the early inflammatory response, while cells of adaptive immunity (CD4 + Th1 lymphocytes and antibody producing B cells) significantly contribute to the development of chronic, relapsing course of inflammation in OA patients. Conventional therapy for OA is directed toward symptomatic treatment, mainly pain management, and is not able to promote regeneration of degenerated cartilage or to attenuate joint inflammation. Since articular cartilage, intra-articular ligaments, and menisci have no ability to heal, regeneration of these tissues remains one of the most important goals of new therapeutic approaches used for OA treatment. Due to their capacity for differentiation into chondrocytes and due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have been the most extensively explored as new therapeutic agents in the cell-based therapy of OA. Simple acquisition, rapid proliferation, maintenance of differentiation potential after repeated passages in vitro, minor immunological rejection due to the low surface expression of major histocompatibility complex antigens, efficient engraftment and long-term coexistence in the host are the main characteristics of MSCs that enable their therapeutic use in OA. In this review article, we emphasized current knowledge and future perspectives regarding molecular and cellular mechanisms responsible for beneficial effects of autologous and allogeneic MSCs in the treatment of OA.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Transplante de Células-Tronco Mesenquimais/métodos , Osteoartrite/imunologia , Osteoartrite/terapia , Animais , Cartilagem Articular/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Condrócitos/imunologia , Condrócitos/transplante , Previsões , Humanos , Transplante de Células-Tronco Mesenquimais/tendências
13.
Cells ; 8(7)2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336879

RESUMO

Galectin-3 regulates numerous biological processes in the gut. We investigated molecular mechanisms responsible for the Galectin-3-dependent regulation of colon inflammation and evaluated whether Galectin-3 may be used as biomarker for monitoring the progression of ulcerative colitis (UC). The differences in disease progression between dextran sodium sulphate-treated wild type and Galectin-3-deficient mice were investigated and confirmed in clinical settings, in 65 patients suffering from mild, moderate, and severe colitis. During the induction phase of colitis, Galectin-3 promoted interleukin-1ß-induced polarization of colonic macrophages towards inflammatory phenotype. In the recovery phase of colitis, Galectin-3 was required for the immunosuppressive function of regulatory dendritic cells (DCs). Regulatory DCs in Galectin-3:Toll-like receptor-4:Kynurenine-dependent manner promoted the expansion of colon-infiltrated T regulatory cells (Tregs) and suppressed Th1 and Th17 cell-driven colon inflammation. Concentration of Galectin-3 in serum and stool samples of UC patients negatively correlated with clinical, endoscopic, and histological parameters of colitis. The cutoff serum values of Galectin-3 that allowed the discrimination of mild from moderate and moderate from severe colitis were 954 pg/mL and 580 pg/mL, respectively. Fecal levels of Galectin-3 higher than 553.44 pg/mL indicated attenuation of UC. In summing up, Galectin-3 regulates the cross-talk between colon-infiltrating DCs and Tregs and represents a new biomarker for monitoring the progression of UC.


Assuntos
Colite Ulcerativa/patologia , Células Dendríticas/patologia , Galectina 3/fisiologia , Linfócitos T Reguladores/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Proteínas Sanguíneas , Células Cultivadas , Progressão da Doença , Feminino , Galectinas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
14.
Curr Stem Cell Res Ther ; 14(4): 327-336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30806325

RESUMO

BACKGROUND: Amniotic Fluid Derived Mesenchymal Stem Cells (AF-MSCs) are adult, fibroblast- like, self-renewable, multipotent stem cells. During the last decade, the therapeutic potential of AF-MSCs, based on their huge differentiation capacity and immunomodulatory characteristics, has been extensively explored in animal models of degenerative and inflammatory diseases. OBJECTIVE: In order to describe molecular mechanisms responsible for the therapeutic effects of AFMSCs, we summarized current knowledge about phenotype, differentiation potential and immunosuppressive properties of AF-MSCs. METHODS: An extensive literature review was carried out in March 2018 across several databases (MEDLINE, EMBASE, Google Scholar), from 1990 to present. Keywords used in the selection were: "amniotic fluid derived mesenchymal stem cells", "cell-therapy", "degenerative diseases", "inflammatory diseases", "regeneration", "immunosuppression". Studies that emphasized molecular and cellular mechanisms responsible for AF-MSC-based therapy were analyzed in this review. RESULTS: AF-MSCs have huge differentiation and immunosuppressive potential. AF-MSCs are capable of generating cells of mesodermal origin (chondrocytes, osteocytes and adipocytes), neural cells, hepatocytes, alveolar epithelial cells, insulin-producing cells, cardiomyocytes and germ cells. AF-MSCs, in juxtacrine or paracrine manner, regulate proliferation, activation and effector function of immune cells. Due to their huge differentiation capacity and immunosuppressive characteristic, transplantation of AFMSCs showed beneficent effects in animal models of degenerative and inflammatory diseases of nervous, respiratory, urogenital, cardiovascular and gastrointestinal system. CONCLUSION: Considering the fact that amniotic fluid is obtained through routine prenatal diagnosis, with minimal invasive procedure and without ethical concerns, AF-MSCs represents a valuable source for cell-based therapy of organ-specific or systemic degenerative and inflammatory diseases.


Assuntos
Células-Tronco Adultas/fisiologia , Líquido Amniótico/citologia , Doenças Autoimunes/terapia , Inflamação/terapia , Células-Tronco Mesenquimais/fisiologia , Doenças Neurodegenerativas/terapia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Imunomodulação
15.
Stem Cells Int ; 2019: 4236973, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191672

RESUMO

During acute or chronic lung injury, inappropriate immune response and/or aberrant repair process causes irreversible damage in lung tissue and most usually results in the development of fibrosis followed by decline in lung function. Inhaled corticosteroids and other anti-inflammatory drugs are very effective in patients with inflammatory lung disorders, but their long-term use is associated with severe side effects. Accordingly, new therapeutic agents that will attenuate ongoing inflammation and, at the same time, promote regeneration of injured alveolar epithelial cells are urgently needed. Mesenchymal stem cells (MSCs) are able to modulate proliferation, activation, and effector function of all immune cells that play an important role in the pathogenesis of acute and chronic inflammatory lung diseases. In addition to the suppression of lung-infiltrated immune cells, MSCs have potential to differentiate into alveolar epithelial cells in vitro and, accordingly, represent new players in cell-based therapy of inflammatory lung disorders. In this review article, we described molecular mechanisms involved in MSC-based therapy of acute and chronic pulmonary diseases and emphasized current knowledge and future perspectives related to the therapeutic application of MSCs in patients suffering from acute respiratory distress syndrome, pneumonia, asthma, chronic obstructive pulmonary diseases, and idiopathic pulmonary fibrosis.

16.
Theranostics ; 9(20): 5976-6001, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534532

RESUMO

Strategies targeting cross-talk between immunosuppressive renal dendritic cells (DCs) and T regulatory cells (Tregs) may be effective in treating cisplatin (CDDP)-induced acute kidney injury (AKI). Galectin 3 (Gal-3), expressed on renal DCs, is known as a crucial regulator of immune response in the kidneys. In this study, we investigated the role of Gal-3 for DCs-mediated expansion of Tregs in the attenuation of CDDP-induced AKI. Methods: AKI was induced in CDDP-treated wild type (WT) C57BL/6 and Gal-3 deficient (Gal-3-/-) mice. Biochemical, histological analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, real-time PCR, magnetic cell sorting, flow cytometry and intracellular staining of renal-infiltrated immune cells were used to determine the differences between CDDP-treated WT and Gal-3-/- mice. Newly synthesized selective inhibitor of Gal-3 (Davanat) was used for pharmacological inhibition of Gal-3. Recombinant Gal-3 was used to demonstrate the effects of exogenously administered soluble Gal-3 on AKI progression. Pam3CSK4 was used for activation of Toll-like receptor (TLR)-2 in DCs. Cyclophosphamide or anti-CD25 antibody were used for the depletion of Tregs. 1-Methyl Tryptophan (1-MT) was used for pharmacological inhibition of Indoleamine 2,3-dioxygenase-1 (IDO1) in TLR-2-primed DCs which were afterwards used in passive transfer experiments. Results: CDDP-induced nephrotoxicity was significantly more aggravated in Gal-3-/- mice. Significantly reduced number of immunosuppressive TLR-2 and IDO1-expressing renal DCs, lower serum levels of KYN, decreased presence of IL-10-producing Tregs and significantly higher number of inflammatory IFN-γ and IL-17-producing neutrophils, Th1 and Th17 cells were observed in the CDDP-injured kidneys of Gal-3-/- mice. Pharmacological inhibitor of Gal-3 aggravated CDDP-induced AKI in WT animals while recombinant Gal-3 attenuated renal injury and inflammation in CDDP-treated Gal-3-/- mice. CDDP-induced apoptosis, driven by Bax and caspase-3, was aggravated in Gal-3-/- animals and in WT mice that received Gal-3 inhibitor (CDDP+Davanat-treated mice). Recombinant Gal-3 managed to completely attenuate CDDP-induced apoptosis in CDDP-injured kidneys of Gal-3-/- mice. Genetic deletion as well as pharmacological inhibition of Gal-3 in renal DCs remarkably reduced TLR-2-dependent activation of IDO1/KYN pathway in these cells diminishing their capacity to prevent transdifferentiation of Tregs in inflammatory Th1 and Th17 cells. Additionally, Tregs generated by Gal-3 deficient DCs were not able to suppress production of IFN-γ and IL-17 in activated neutrophils. TLR-2-primed DCs significantly enhanced capacity of Tregs for attenuation of CDDP-induced AKI and inflammation and expression of Gal-3 on TLR-2-primed DCs was crucially important for their capacity to enhance nephroprotective and immunosuppressive properties of Tregs. Adoptive transfer of TLR-2-primed WTDCs significantly expanded Tregs in the kidneys of CDDP-treated WT and Gal-3-/- recipients resulting in the suppression of IFN-γ and IL-17-driven inflammation and alleviation of AKI. Importantly, this phenomenon was not observed in CDDP-treated WT and Gal-3-/- recipients of TLR-2-primed Gal-3-/-DCs. Gal-3-dependent nephroprotective and immunosuppressive effects of renal DCs was due to the IDO1-induced expansion of renal Tregs since either inhibition of IDO1 activity in TLR-2-primed DCs or depletion of Tregs completely diminished DCs-mediated attenuation of CDDP-induced AKI. Conclusions: Gal-3 protects from CDDP-induced AKI by promoting TLR-2-dependent activation of IDO1/KYN pathway in renal DCs resulting in increased expansion of immunosuppressive Tregs in injured kidneys. Activation of Gal-3:TLR-2:IDO1 pathway in renal DCs should be further explored as new therapeutic approach for DC-based immunosuppression of inflammatory renal diseases.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Cisplatino/toxicidade , Galectina 3/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Receptor 2 Toll-Like/metabolismo , Injúria Renal Aguda/genética , Animais , Células Cultivadas , Citometria de Fluxo , Galectina 3/genética , Imuno-Histoquímica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/genética , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo , Receptor 2 Toll-Like/genética
17.
Biomed Pharmacother ; 104: 404-410, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29787987

RESUMO

Due to their trophic and immunoregulatory characteristics mesenchymal stem cells (MSCs) have tremendous potential for use in a variety of clinical applications. Challenges in MSCs' clinical applications include low survival of transplanted cells and low grafting efficiency requiring use of a high number of MSCs to achieve therapeutic benefits. Accordingly, new approaches are urgently needed in order to overcome these limitations. Recent evidence indicates that modulation of autophagy in MSCs prior to their transplantation enhances survival and viability of engrafted MSCs and promotes their pro-angiogenic and immunomodulatory characteristics. Here, we review the current literature describing mechanisms by which modulation of autophagy strengthens pro-angiogenic and immunosuppressive characteristics of MSCs in animal models of multiple sclerosis, osteoporosis, diabetic limb ischemia, myocardial infarction, acute graft-versus-host disease, kidney and liver diseases. Obtained results suggest that modulation of autophagy in MSCs may represent a new therapeutic approach that could enhance efficacy of MSCs in the treatment of ischemic and autoimmune diseases.


Assuntos
Doenças Autoimunes/terapia , Autofagia/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Transplante de Células-Tronco Mesenquimais/métodos
18.
Therap Adv Gastroenterol ; 11: 1756284818815334, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574192

RESUMO

Indoleamine 2,3-dioxygenase (IDO) has the most important role in modulation of tryptophan-dependent effects in the gastrointestinal tract, including modulation of intestinal immune response. An increased IDO activity maintains immune tolerance and attenuates ongoing inflammation but allows immune escape and uncontrolled growth of gastrointestinal tumors. Accordingly, IDO represents a novel therapeutic target for the treatment of inflammatory and malignant diseases of the gastrointestinal tract. In this review article, we summarize current knowledge about molecular and cellular mechanisms that are involved in IDO-dependent effects. We provide a brief outline of experimental and clinical studies that increased our understanding of how enhanced IDO activity: controls host-microbiota interactions in the gut; regulates detrimental immune response in inflammatory disorders of the gastrointestinal system; and allows immune escape and uncontrolled growth of gastrointestinal tumors. Additionally, we present future perspectives regarding modulation of IDO activity in the gut as possible new therapeutic approaches for the treatment of inflammatory and malignant diseases of the gastrointestinal system.

19.
Stem Cell Rev Rep ; 14(2): 153-165, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29177796

RESUMO

Mesenchymal stem cells (MSCs) are promising resource for the therapy of inflammatory bowel diseases (IBDs) on the grounds of their differentiation capabilities and immuno-modulatory characteristics. Results of clinical studies indicate that local application of MSCs is a secure and beneficial approach for the treatment of perianal fistulas while systemic application of MSCs leads to the attenuation or aggravation of IBDs. Herein, we emphasized molecular mechanisms and approaches that should improve efficacy of MSC-based therapy of IBDs.


Assuntos
Doenças Inflamatórias Intestinais/terapia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos , Transplante de Células-Tronco Mesenquimais
20.
Biomed Pharmacother ; 100: 426-432, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29471245

RESUMO

Dendritic cells (DCs) have important pathogenic role in the induction and progression of ulcerative colitis (UC), but their role in mesenchymal stem cells (MSCs)-mediated suppression of colon injury and inflammation is not revealed. By using dextran sodium sulfate (DSS)-induced colitis, a well-established murine model of UC, we examined effects of MSCs on phenotype and function of colon infiltrating DCs. Clinical, histological, immunophenotypic analysis and passive transfer of MSCs-primed DCs were used to evaluate capacity of MSC to suppress inflammatory phenotype of DCs in vivo. Additionally, DCs:MSCs interplay was also investigated in vitro, to confirmed in vivo obtained findings. Intraperitoneally administered MSCs (2 × 106) significantly reduced progression of DSS-induced colitis and reduced serum levels of inflammatory cytokines (IL-1ß, IL-12, and IL-6). Passive transfer of in vivo MSCs-primed DCs reduced severity of colitis while passive transfer of MSCs-non-primed DCs aggravated DSS-induced colitis. Through the secretion of immunomodulatory Galectin 3, MSCs, in paracrine manner, down-regulated production of inflammatory cytokines in DCs and attenuated expression of co-stimulatory and major histocompatibility complex class II molecules on their membranes. Taken together, these results indicate that MSCs achieved their beneficial effects in DSS-induced colitis by suppressing inflammatory phenotype of DCs in Gal-3 dependent manner. Therapeutic targeting of DCs by MSCs should be explored in future studies as a useful approach for the treatment of UC.


Assuntos
Colite/imunologia , Colite/terapia , Células Dendríticas/imunologia , Sulfato de Dextrana/toxicidade , Transplante de Células-Tronco Mesenquimais/métodos , Doença Aguda , Animais , Colite/induzido quimicamente , Células Dendríticas/efeitos dos fármacos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA