Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microsc ; 259(2): 80-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25623622

RESUMO

When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three-dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze-fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block-face, SBF-SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions.


Assuntos
Técnicas de Preparação Histocitológica/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Animais , Encéfalo/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Pulmão/citologia , Pulmão/ultraestrutura , Camundongos , Microscopia Eletrônica , Microscopia Eletrônica de Varredura/instrumentação , Microtomia , Raízes de Plantas/ultraestrutura
2.
Plant Cell Physiol ; 53(1): 244-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22138099

RESUMO

Arbuscular mycorrhizas (AMs) are symbiotic interactions established within the roots of most plants by soil fungi belonging to the Glomeromycota. The extensive accommodation of the fungus in the root tissues largely takes place intracellularly, within a specialized interface compartment surrounded by the so-called perifungal membrane, an extension of the host plasmalemma. By combining live confocal imaging of green fluorescent protein (GFP)-tagged proteins and transmission electron microscopy (TEM), we have investigated the mechanisms leading to the biogenesis of this membrane. Our results show that pre-penetration responses and symbiotic interface construction are associated with extensive membrane dynamics. They involve the main components of the exocytotic machinery, with a major participation of the Golgi apparatus, as revealed by both TEM and in vivo GFP imaging. The labeling of known exocytosis markers, such as v-SNARE proteins of the VAMP72 family and the EXO84b subunit of the exocyst complex, allowed live imaging of the cell components involved in perifungal membrane construction, clarifying how this takes place ahead of the growing intracellular hypha. Lastly, our novel data are used to illustrate a model of membrane dynamics within the pre-penetration apparatus during AM fungal penetration.


Assuntos
Membrana Celular/metabolismo , Exocitose , Micorrizas/citologia , Micorrizas/metabolismo , Biomarcadores/metabolismo , Compartimento Celular , Membrana Celular/ultraestrutura , Daucus carota/citologia , Daucus carota/metabolismo , Daucus carota/microbiologia , Daucus carota/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Medicago truncatula/citologia , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Modelos Biológicos , Micorrizas/ultraestrutura , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
3.
Folia Microbiol (Praha) ; 52(4): 407-14, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18062190

RESUMO

Four in vitro experiments were set up to verify the colonization potential of ectomycorrhizal (EcM) Cenococcum geophilum FR. (strain CGE-4), saprotrophic Geomyces pannorum (LINK) SIGLER & CARMICHAEL (GPA-1) and a frequent root-associated, potentially ericoid mycorrhiza (ErM)-forming Meliniomyces variabilis Hambleton & Sigler (MVA-1) in roots of Rhododendron and Vaccinium. A typical ErM fungus, Rhizoscyphus ericae (Read) Zhuang & Korf (RER-1), was included for comparison. All fungal strains intracellularly colonized rooted Vaccinium microcuttings: GPA-1 occasionally produced hyphal loops similar to ErM, MVA-1 and RER-1 exhibited a typical ErM colonization pattern. CGE-4 hyphae grew vigorously on and around newly formed roots and rarely penetrated turgescent rhizodermal cells forming intracellular loose loops. Rooting of Rhododendron sp. microcuttings was not promoted by any fungal strain except CGE-4, which also promoted the most vigorous growth of Rhododendron ponticum L. seedlings. The widespread EcM fungus C. geophilum has a potential to colonize non-EcM roots and support their development which may influence overall growth of ericaceous plants. As shown for G. pannorum, structures resembling ErM may be formed by fungi that are to date not regarded as ericoid mycorrhizal.


Assuntos
Ascomicetos/fisiologia , Chrysosporium/fisiologia , Micorrizas/fisiologia , Rhododendron/microbiologia , Vaccinium/microbiologia , Microscopia de Interferência , Micorrizas/ultraestrutura , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Rhododendron/fisiologia , Rhododendron/ultraestrutura , Vaccinium/fisiologia , Vaccinium/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA