Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514636

RESUMO

On February 6, 2023 (local time), two earthquakes (Mw7.8 and Mw7.7) struck central and southern Turkey, causing extensive damage to several cities and claiming a toll of 40,000 lives. In this study, we propose a method for seismic building damage assessment and analysis by combining SAR amplitude and phase coherence change detection. We determined building damage in five severely impacted urban areas and calculated the damage ratio by measuring the urban area and the damaged area. The largest damage ratio of 18.93% is observed in Nurdagi, and the smallest ratio of 7.59% is found in Islahiye. We verified the results by comparing them with high-resolution optical images and AI recognition results from the Microsoft team. We also used pixel offset tracking (POT) technology and D-InSAR technology to obtain surface deformation using Sentinel-1A images and analyzed the relationship between surface deformation and post-earthquake urban building damage. The results show that Nurdagi has the largest urban average surface deformation of 0.48 m and Antakya has the smallest deformation of 0.09 m. We found that buildings in the areas with steeper slopes or closer to earthquake faults have higher risk of collapse. We also discussed the influence of SAR image parameters on building change recognition. Image resolution and observation geometry have a great influence on the change detection results, and the resolution can be improved by various means to raise the recognition accuracy. Our research findings can guide earthquake disaster assessment and analysis and identify influential factors of earthquake damage.

2.
Sensors (Basel) ; 19(6)2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893773

RESUMO

In the context of global warming, the air temperature of the Heihe basin in Northeast China has increased significantly, resulting in the degradation of the island permafrost. In this paper, we used an elaborated time-series Interferometric Synthetic Aperture Radar (InSAR) strategy to monitor the ground deformation in the Heihe area (Heilongjiang Province, China) and then analyzed the permafrost deformation characteristics from June 2007 to December 2010. The results showed that the region presented island permafrost surface deformation, and the deformation rate along the line of sight mainly varied from ⁻70 to 70 mm/a. Based on the analysis of remote sensing and topological measurements, we found that the deformation area generally occurred at lower altitudes and on shady slopes, which is consistent with the distribution characteristics of permafrost islands. Additionally, the deformation of permafrost is highly correlated with the increase of annual minimum temperature, with an average correlation value of ⁻0.80. The accelerated degradation of permafrost in the study area led to the settlement, threatening the infrastructure safety. Our results reveal accelerated degradation characteristics for the island permafrost under the background of rising air temperature, and provide a reference for future relevant research.

3.
Sensors (Basel) ; 8(9): 5426-5448, 2008 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-27873822

RESUMO

Interferometric Synthetic Aperture Radar (InSAR) is a powerful technology for observing the Earth surface, especially for mapping the Earth's topography and deformations. InSAR measurements are however often significantly affected by the atmosphere as the radar signals propagate through the atmosphere whose state varies both in space and in time. Great efforts have been made in recent years to better understand the properties of the atmospheric effects and to develop methods for mitigating the effects. This paper provides a systematic review of the work carried out in this area. The basic principles of atmospheric effects on repeat-pass InSAR are first introduced. The studies on the properties of the atmospheric effects, including the magnitudes of the effects determined in the various parts of the world, the spectra of the atmospheric effects, the isotropic properties and the statistical distributions of the effects, are then discussed. The various methods developed for mitigating the atmospheric effects are then reviewed, including the methods that are based on PSInSAR processing, the methods that are based on interferogram modeling, and those that are based on external data such as GPS observations, ground meteorological data, and satellite data including those from the MODIS and MERIS. Two examples that use MODIS and MERIS data respectively to calibrate atmospheric effects on InSAR are also given.

4.
Sci Rep ; 5: 15542, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26480892

RESUMO

This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA