Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMC Genomics ; 25(1): 235, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438835

RESUMO

BACKGROUND: Orchardgrass (Dactylis glomerata L.), a perennial forage, has the advantages of rich leaves, high yield, and good quality and is one of the most significant forage for grassland animal husbandry and ecological management in southwest China. Mitochondrial (mt) genome is one of the major genetic systems in plants. Studying the mt genome of the genus Dactylis could provide more genetic information in addition to the nuclear genome project of the genus. RESULTS: In this study, we sequenced and assembled two mitochondrial genomes of Dactylis species of D. glomerata (597, 281 bp) and D. aschersoniana (613, 769 bp), based on a combination of PacBio and Illumina. The gene content in the mitochondrial genome of D. aschersoniana is almost identical to the mitochondrial genome of D. glomerata, which contains 22-23 protein-coding genes (PCGs), 8 ribosomal RNAs (rRNAs) and 30 transfer RNAs (tRNAs), while D. glomerata lacks the gene encoding the Ribosomal protein (rps1) and D. aschersoniana contains one pseudo gene (atp8). Twenty-three introns were found among eight of the 30 protein-coding genes, and introns of three genes (nad 1, nad2, and nad5) were trans-spliced in Dactylis aschersoniana. Further, our mitochondrial genome characteristics investigation of the genus Dactylis included codon usage, sequences repeats, RNA editing and selective pressure. The results showed that a large number of short repetitive sequences existed in the mitochondrial genome of D. aschersoniana, the size variation of two mitochondrial genomes is due largely to the presence of a large number of short repetitive sequences. We also identified 52-53 large fragments that were transferred from the chloroplast genome to the mitochondrial genome, and found that the similarity was more than 70%. ML and BI methods used in phylogenetic analysis revealed that the evolutionary status of the genus Dactylis. CONCLUSIONS: Thus, this study reveals the significant rearrangements in the mt genomes of Pooideae species. The sequenced Dactylis mt genome can provide more genetic information and improve our evolutionary understanding of the mt genomes of gramineous plants.


Assuntos
Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Dactylis , Filogenia , Hibridização Genômica Comparativa , RNA Ribossômico , Genômica
2.
Plant Dis ; : PDIS02240360RE, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956749

RESUMO

Rust disease is a common plant disease that can cause wilting, slow growth of plant leaves, and even affect the growth and development of plants. Orchardgrass (Dactylis glomerata L.) is native to temperate regions of Europe, which has been introduced as a superior forage grass in temperate regions worldwide. Orchardgrass has rich genetic diversity and is widely distributed in the world, which may contain rust resistance genes not found in other crops. Therefore, we collected a total of 333 orchardgrass accessions from different regions around the world. Through a genome-wide association study (GWAS) analysis conducted in four different environments, 91 genes that overlap or are adjacent to significant single nucleotide polymorphisms (SNPs) were identified as potential rust disease resistance genes. Combining transcriptome data from susceptible (PI292589) and resistant (PI251814) accessions, the GWAS candidate gene DG5C04160.1 encoding glutathione S-transferase (GST) was found to be important for orchardgrass rust (Puccinia graminis) resistance. Interestingly, by comparing the number of GST gene family members in seven species, it was found that orchardgrass has the most GST gene family members, containing 119 GST genes. Among them, 23 GST genes showed significant differential expression after inoculation with the rust pathogen in resistant and susceptible accessions; 82% of the genes still showed significantly increased expression 14 days after inoculation in resistant accessions, while the expression level significantly decreased in susceptible accessions. These results indicate that GST genes play an important role in orchardgrass resistance to rust (P. graminis) stress by encoding GST to reduce its oxidative stress response.

3.
Plant Biotechnol J ; 21(11): 2348-2357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37530223

RESUMO

Millets are a class of nutrient-rich coarse cereals with high resistance to abiotic stress; thus, they guarantee food security for people living in areas with extreme climatic conditions and provide stress-related genetic resources for other crops. However, no platform is available to provide a comprehensive and systematic multi-omics analysis for millets, which seriously hinders the mining of stress-related genes and the molecular breeding of millets. Here, a free, web-accessible, user-friendly millets multi-omics database platform (Milletdb, http://milletdb.novogene.com) has been developed. The Milletdb contains six millets and their one related species genomes, graph-based pan-genomics of pearl millet, and stress-related multi-omics data, which enable Milletdb to be the most complete millets multi-omics database available. We stored GWAS (genome-wide association study) results of 20 yield-related trait data obtained under three environmental conditions [field (no stress), early drought and late drought] for 2 years in the database, allowing users to identify stress-related genes that support yield improvement. Milletdb can simplify the functional genomics analysis of millets by providing users with 20 different tools (e.g., 'Gene mapping', 'Co-expression', 'KEGG/GO Enrichment' analysis, etc.). On the Milletdb platform, a gene PMA1G03779.1 was identified through 'GWAS', which has the potential to modulate yield and respond to different environmental stresses. Using the tools provided by Milletdb, we found that the stress-related PLATZs TFs (transcription factors) family expands in 87.5% of millet accessions and contributes to vegetative growth and abiotic stress responses. Milletdb can effectively serve researchers in the mining of key genes, genome editing and molecular breeding of millets.


Assuntos
Embaralhamento de DNA , Milhetes , Humanos , Milhetes/genética , Estudo de Associação Genômica Ampla , Multiômica , Genômica/métodos
4.
Plant Physiol ; 190(2): 1490-1505, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35861426

RESUMO

Vernalization, influenced by environmental factors, is an essential process associated with the productivity of temperate crops, during which epigenetic regulation of gene expression plays an important role. Although DNA methylation is one of the major epigenetic mechanisms associated with the control of gene expression, global changes in DNA methylation in the regulation of gene expression during vernalization-induced flowering of temperate plants remain largely undetermined. To characterize vernalization-associated DNA methylation dynamics, we performed whole-genome bisulfite-treated sequencing and transcriptome sequencing in orchardgrass (Dactylis glomerata) during vernalization. The results revealed that increased levels of genome DNA methylation during the early vernalization of orchardgrass were associated with transcriptional changes in DNA methyltransferase and demethylase genes. Upregulated expression of vernalization-related genes during early vernalization was attributable to an increase in mCHH in the promoter regions of these genes. Application of an exogenous DNA methylation accelerator or overexpression of orchardgrass NUCLEAR POLY(A) POLYMERASE (DgPAPS4) promoted earlier flowering, indicating that DNA hypermethylation plays an important role in vernalization-induced flowering. Collectively, our findings revealed that vernalization-induced hypermethylation is responsible for floral primordium initiation and development. These observations provide a theoretical foundation for further studies on the molecular mechanisms underlying the control of vernalization in temperate grasses.


Assuntos
Metilação de DNA , Dactylis , Temperatura Baixa , Metilação de DNA/genética , Dactylis/genética , Dactylis/metabolismo , Epigênese Genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Metiltransferases/metabolismo
5.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958746

RESUMO

Tillering is a special type of branching and one of the important contributors to the yield of cereal crops. Strigolactone and sucrose play a vital role in controlling tiller formation, but their mechanism has not been elucidated completely in most crops. Orchardgrass (Dactylis glomerata L.) is an important perennial forage with prominent tillering ability among crops. To date, the mechanism of tillering in orchardgrass is still largely unknown. Therefore, we performed a transcriptome and miRNA analysis to reveal the potential RNA mechanism of tiller formation under strigolactone and sucrose treatment in orchardgrass. Our results found that D3, COL5, NCED1, HXK7, miRNA4393-z, and miRNA531-z could be key factors to control tiller bud development in orchardgrass. In addition, strigolactones might affect the ABA biosynthesis pathway to regulate the tiller bud development of orchardgrass, which may be related to the expression changes in miRNA4393-z, NCED1, and D10. miRNA531-z could be involved in the interaction of strigolactones and sucrose in regulating tillering. These results will be further used to clarify the potential mechanism of tillering for breeding new high-tillering and high-production orchardgrass varieties and beneficial to improving the production and reproduction of crops.


Assuntos
Dactylis , Melhoramento Vegetal , Dactylis/genética , Perfilação da Expressão Gênica , Sacarose , Transcriptoma
6.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003564

RESUMO

Orchardgrass (Dactylis glomerata L.) is among the most economically important perennial cool-season grasses, and is considered an excellent hay, pasture, and silage crop in temperate regions worldwide. Tillering is a vital feature that dominates orchardgrass regeneration and biomass yield. However, transcriptional dynamics underlying early-stage bud development in high- and low-tillering orchardgrass genotypes are unclear. Thus, this study assessed the photosynthetic parameters, the partially essential intermediate biomolecular substances, and the transcriptome to elaborate the early-stage profiles of tiller development. Photosynthetic efficiency and morphological development significantly differed between high- (AKZ-NRGR667) and low-tillering genotypes (D20170203) at the early stage after tiller formation. The 206.41 Gb of high-quality reads revealed stage-specific differentially expressed genes (DEGs), demonstrating that signal transduction and energy-related metabolism pathways, especially photosynthetic-related processes, influence tiller induction and development. Moreover, weighted correlation network analysis (WGCNA) and functional enrichment identified distinctively co-expressed gene clusters and four main regulatory pathways, including chlorophyll, lutein, nitrogen, and gibberellic acid (GA) metabolism pathways. Therefore, photosynthesis, carbohydrate synthesis, nitrogen efficient utilization, and phytohormone signaling pathways are closely and intrinsically linked at the transcriptional level. These findings enhance our understanding of tillering in orchardgrass and perennial grasses, providing a new breeding strategy for improving forage biomass yield.


Assuntos
Dactylis , Melhoramento Vegetal , Dactylis/genética , Perfilação da Expressão Gênica , Poaceae/genética , Transcriptoma , Genótipo , Nitrogênio
7.
Funct Integr Genomics ; 22(6): 1331-1344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35941266

RESUMO

Basic helix-loop-helix (bHLH) is the second largest family of transcription factors that widely exist in plants and animals, and plays a key role in a variety of biological processes. As an important forage crop worldwide, little information is available about the bHLH family in orchardgrass (Dactylis glomerata L.), although a huge number of bHLH family have been identified and characterized in plants. In this study, we performed genome-wide analysis of bHLH transcription factor family of orchardgrass and identified 132 DgbHLH genes. The phylogenetic tree was constructed by using bHLH proteins of orchardgrass, with Arabidopsis thaliana and Oryza sativa bHLH proteins, to elucidate their homology and classify them into 22 subfamilies. The results of conserved motifs and gene structure support the classification of DgbHLH family. In addition, chromosomal location and gene duplication events of DgbHLH genes were further studied. Transcriptome data exhibited that DgbHLH genes were differentially expressed in different tissues of orchardgrass. We analyzed the gene expression level of 12 DgbHLH genes in orchardgrass under three types of abiotic stresses (heat, salt, and drought). Finally, heterologous expression assays in yeast indicated that DgbHLH46 and DgbHLH128 may enhance the resistance to drought and salt stress. Furthermore, DgbHLH128 may also be involved in abiotic stress by binding to the MYC element. Our study provides a comprehensive assessment of DgbHLH family of orchardgrass, revealing new insights for enhancing gene utilization and improving forage performance.


Assuntos
Arabidopsis , Dactylis , Animais , Dactylis/genética , Dactylis/metabolismo , Tolerância ao Sal/genética , Secas , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Estresse Fisiológico/genética , Plantas , Regulação da Expressão Gênica de Plantas
8.
BMC Plant Biol ; 22(1): 68, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151272

RESUMO

Methyl jasmonate (MeJA) plays a role in improving plant stress tolerance. The molecular mechanisms associated with heat tolerance mediated by MeJA are not fully understood in perennial grass species. The study was designed to explore transcriptomic mechanisms underlying heat tolerance by exogenous MeJA in perennial ryegrass (Lolium perenne L.) using RNA-seq. Transcriptomic profiling was performed on plants under normal temperature (CK), high temperature for 12 h (H), MeJA pretreatment (T), MeJA pretreatment + H (T-H), respectively. The analysis of differentially expressed genes (DEGs) showed that H resulted in the most DEGs and T had the least, compared with CK. Among them, the DEGs related to the response to oxygen-containing compound was higher in CKvsH, while many genes related to photosynthetic system were down-regulated. The DEGs related to plastid components was higher in CKvsT. GO and KEGG analysis showed that exogenous application of MeJA enriched photosynthesis related pathways under heat stress. Exogenous MeJA significantly increased the expression of genes involved in chlorophyll (Chl) biosynthesis and antioxidant metabolism, and decreased the expression of Chl degradation genes, as well as the expression of heat shock transcription factor - heat shock protein (HSF-HSP) network under heat stress. The results indicated that exogenous application of MeJA improved the heat tolerance of perennial ryegrass by mediating expression of genes in different pathways, such as Chl biosynthesis and degradation, antioxidant enzyme system, HSF-HSP network and JAs biosynthesis.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Lolium/genética , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Termotolerância/genética , Acetatos/metabolismo , Antioxidantes/metabolismo , Clorofila/genética , Clorofila/metabolismo , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes , Lolium/efeitos dos fármacos , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reprodutibilidade dos Testes , Termotolerância/efeitos dos fármacos
9.
Genome ; 65(4): 189-203, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104149

RESUMO

The C2H2-type zinc finger protein (ZFP) family is one of the largest transcription factor families in the plant kingdom and its members are involved in plant growth, development, and stress responses. As an economically valuable perennial graminaceous forage crop, orchardgrass (Dactylis glomerata) is an important feedstuff resource owing to its high yield and quality. In this study, 125 C2H2-type ZFPs in orchardgrass (Dg-ZFPs) were identified and further classified by phylogenetic analysis. The members with similar gene structures were generally clustered into the same groups, with proteins containing the conserved QALGGH motif being concentrated in groups VIII and IX. Gene ontology and miRNA target analyses indicated that Dg-ZFPs likely perform diverse biological functions through their gene interactions. The RNA-seq data revealed differentially expressed genes across tissues and development phases, suggesting that some Dg-ZFPs might participate in growth and development regulation. Abiotic stress responses of Dg-ZFP genes were verified by qPCR and Saccharomyces cerevisiae transformation, revealing that Dg-ZFP125 could enhance the tolerance of yeasts to osmotic and salt stresses. Our study performed a novel systematic analysis of Dg-ZFPs in orchardgrass, providing a reference for this gene family in other grasses and revealing new insights for enhancing gene utilization.


Assuntos
Dedos de Zinco CYS2-HIS2 , Dactylis , Dedos de Zinco CYS2-HIS2/genética , Dactylis/genética , Dactylis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Dedos de Zinco/genética
10.
Genomics ; 113(4): 2413-2425, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058273

RESUMO

SPL (SQUAMOSA promoter binding protein-like) is a plant-specific transcription factor family that contains the conserved SBP domain, which plays a vital role in the vegetative-to-reproductive phase transition, flowering development and regulation, tillering/branching, and stress responses. Although the SPL family has been identified and characterized in various plant species, limited information about it has been obtained in orchardgrass, which is a critical forage crop worldwide. In this study, 17 putative DgSPL genes were identified among seven chromosomes, and seven groups that share similar gene structures and conserved motifs were determined by phylogenetic analysis. Of these, eight genes have potential target sites for miR156. cis-Element and gene ontology annotation analysis indicated DgSPLs may be involved in regulating development and abiotic stress responses. The expression patterns of eight DgSPL genes at five developmental stages, in five tissues, and under three stress conditions were determined by RNA-seq and qRT-PCR. These assays indicated DgSPLs are involved in vegetative-to-reproductive phase transition, floral development, and stress responses. The transient expression analysis in tobacco and heterologous expression assays in yeast indicated that miR156-targeted DG1G01828.1 and DG0G01071.1 are nucleus-localized proteins, that may respond to drought, salt, and heat stress. Our study represents the first systematic analysis of the SPL family in orchardgrass. This research provides a comprehensive assessment of the DgSPL family, which lays the foundation for further examination of the role of miR156/DgSPL in regulating development and stress responses in forages grasses.


Assuntos
Dactylis , MicroRNAs , Dactylis/genética , Dactylis/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética
11.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562863

RESUMO

Soil salinization has become a serious challenge to modern agriculture worldwide. The purpose of the study was to reveal salt tolerance induced by spermine (Spm) associated with alterations in water and redox homeostasis, photosynthetic performance, and global metabolites reprogramming based on analyses of physiological responses and metabolomics in creeping bentgrass (Agrostis stolonifera). Plants pretreated with or without 0.5 mM Spm were subjected to salt stress induced by NaCl for 25 days in controlled growth chambers. Results showed that a prolonged period of salt stress caused a great deal of sodium (Na) accumulation, water loss, photoinhibition, and oxidative damage to plants. However, exogenous application of Spm significantly improved endogenous spermidine (Spd) and Spm contents, followed by significant enhancement of osmotic adjustment (OA), photosynthesis, and antioxidant capacity in leaves under salt stress. The Spm inhibited salt-induced Na accumulation but did not affect potassium (K) content. The analysis of metabolomics demonstrated that the Spm increased intermediate metabolites of γ-aminobutyric acid (GABA) shunt (GABA, glutamic acid, and alanine) and tricarboxylic acid (TCA) cycle (aconitic acid) under salt stress. In addition, the Spm also up-regulated the accumulation of multiple amino acids (glutamine, valine, isoleucine, methionine, serine, lysine, tyrosine, phenylalanine, and tryptophan), sugars (mannose, fructose, sucrose-6-phosphate, tagatose, and cellobiose), organic acid (gallic acid), and other metabolites (glycerol) in response to salt stress. These metabolites played important roles in OA, energy metabolism, signal transduction, and antioxidant defense under salt stress. More importantly, the Spm enhanced GABA shunt and the TCA cycle for energy supply in leaves. Current findings provide new evidence about the regulatory roles of the Spm in alleviating salt damage to plants associated with global metabolites reprogramming and metabolic homeostasis.


Assuntos
Agrostis , Agrostis/fisiologia , Antioxidantes/metabolismo , Tolerância ao Sal , Espermina/metabolismo , Água/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328700

RESUMO

Soil salination is likely to reduce crop production worldwide. Annual ryegrass (Lolium multiflorum L.) is one of the most important forages cultivated in temperate and subtropical regions. We performed a time-course comparative transcriptome for salinity-sensitive (SS) and salinity-insensitive (SI) genotypes of the annual ryegrass at six intervals post-stress to describe the transcriptional changes and identify the core genes involved in the early responses to salt stress. Our study generated 215.18 Gb of clean data and identified 7642 DEGs in six pairwise comparisons between the SS and SI genotypes of annual ryegrass. Function enrichment of the DEGs indicated that the differences in lipid, vitamins, and carbohydrate metabolism are responsible for variation in salt tolerance of the SS and SI genotypes. Stage-specific profiles revealed novel regulation mechanisms in salinity stress sensing, phytohormones signaling transduction, and transcriptional regulation of the early salinity responses. High-affinity K+ (HAKs) and high-affinity K1 transporter (HKT1) play different roles in the ionic homeostasis of the two genotypes. Moreover, our results also revealed that transcription factors (TFs), such as WRKYs, ERFs, and MYBs, may have different functions during the early signaling sensing of salt stress, such as WRKYs, ERFs, and MYBs. Generally, our study provides insights into the mechanisms of the early salinity response in the annual ryegrass and accelerates the breeding of salt-tolerant forage.


Assuntos
Lolium , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lolium/metabolismo , Melhoramento Vegetal , Salinidade , Estresse Salino/genética , Tolerância ao Sal/genética , Transcriptoma
13.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269921

RESUMO

Due to increased global warming and climate change, drought has become a serious threat to horticultural crop cultivation and management. The purpose of this study was to investigate the effect of spermine (Spm) pretreatment on metabolic alterations of polyamine (PAs), γ-aminobutyric acid (GABA), proline (Pro), and nitrogen associated with drought tolerance in creeping bentgrass (Agrostis stolonifera). The results showed that drought tolerance of creeping bentgrass could be significantly improved by the Spm pretreatment, as demonstrated by the maintenance of less chlorophyll loss and higher photosynthesis, gas exchange, water use efficiency, and cell membrane stability. The Spm pretreatment further increased drought-induced accumulation of endogenous PAs, putrescine, spermidine, and Spm, and also enhanced PAs metabolism through improving arginine decarboxylases, ornithine decarboxylase, S-adenosylmethionine decarboxylase, and polyamine oxidase activities during drought stress. In addition, the Spm application not only significantly improved endogenous GABA content, glutamate content, activities of glutamate decarboxylase and α-ketoglutarase, but also alleviated decline in nitrite nitrogen content, nitrate reductase, glutamine synthetase, glutamate synthetase, and GABA aminotransferase activities under drought stress. The Spm-pretreated creeping bentgrass exhibited significantly lower ammonia nitrogen content and nitrite reductase activity as well as higher glutamate dehydrogenase activity than non-pretreated plants in response to drought stress. These results indicated beneficial roles of the Spm on regulating GABA and nitrogen metabolism contributing towards better maintenance of Tricarboxylic acid (TCA) cycle in creeping bentgrass. Interestingly, the Spm-enhanced Pro metabolism rather than more Pro accumulation could be the key regulatory mechanism for drought tolerance in creeping bentgrass. Current findings provide a comprehensive understanding of PAs interaction with other metabolic pathways to regulate drought tolerance in grass species.


Assuntos
Agrostis , Agrostis/fisiologia , Secas , Ácido Glutâmico/metabolismo , Nitrogênio/metabolismo , Poliaminas/metabolismo , Prolina/metabolismo , Espermina/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293104

RESUMO

Beneficial effects of spermidine (Spd) on alleviating abiotic stress damage have been explored in plants for hundreds of years, but limited information is available about its roles in regulating lipids signaling and metabolism during heat stress. White clover (Trifolium repens) plants were pretreated with 70 µM Spd and then subjected to high temperature (38/33 °C) stress for 20 days. To further investigate the effect of Spd on heat tolerance, transgenic Arabidopsisthaliana overexpressing a TrSAMS encoding a key enzyme involved in Spd biosynthesis was exposed to high temperature (38/33 °C) stress for 10 days. A significant increase in endogenous Spd content in white clover by exogenous application of Spd or the TrSAMS overexpression in Arabidopsisthaliana could effectively mitigate heat-induced growth retardation, oxidative damage to lipids, and declines in photochemical efficiency and cell membrane stability. Based on the analysis of metabolomics, the amino acids and vitamins metabolism, biosynthesis of secondary metabolites, and lipids metabolism were main metabolic pathways regulated by the Spd in cool-season white clover under heat stress. Further analysis of lipidomics found the TrSAMS-transgenic plants maintained relatively higher accumulations of total lipids, eight phospholipids (PC, phosphatidylcholine; PG, phosphatidylglycerol; PS, phosphatidylserine; CL, cardiolipin; LPA, lysophosphatidic acid; LPC, lyso phosphatidylcholine; LPG, lyso phosphatidylglycerol; and LPI, lyso phosphatidylinositol), one glycoglycerolipid (DGDG, digalactosyl diacylglycerol), and four sphingolipids (Cer, ceramide; CerG2GNAc1, dihexosyl N-acetylhexosyl ceramide; Hex1Cer, hexosyl ceramide; and ST, sulfatide), higher ratio of DGDG: monogalactosyl diacylglycerol (MGDG), and lower unsaturation level than wild-type Arabidopsisthaliana in response to heat stress. Spd-induced lipids accumulation and remodeling could contribute to better maintenance of membrane stability, integrity, and functionality when plants underwent a long period of heat stress. In addition, the Spd significantly up-regulated PIP2 and PA signaling pathways, which was beneficial to signal perception and transduction for stress defense. Current findings provide a novel insight into the function of Spd against heat stress through regulating lipids signaling and reprograming in plants.


Assuntos
Espermidina , Trifolium , Espermidina/farmacologia , Espermidina/metabolismo , Lipidômica , Fosfatidilserinas/metabolismo , Cardiolipinas/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Diglicerídeos/metabolismo , Temperatura , Trifolium/metabolismo , Ceramidas/metabolismo , Fosfatidilcolinas/metabolismo , Lisofosfolipídeos/metabolismo , Fosfatidilinositóis/metabolismo , Aminoácidos/metabolismo , Vitaminas/metabolismo
15.
BMC Genomics ; 22(1): 178, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711917

RESUMO

BACKGROUND: Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season perennial forage grasses that is widely cultivated in the world and is highly tolerant to stressful conditions. However, little is known about the mechanisms underlying this tolerance. The NAC (NAM, ATAF1/2, and CUC2) transcription factor family is a large plant-specific gene family that actively participates in plant growth, development, and response to abiotic stress. At present, owing to the absence of genomic information, NAC genes have not been systematically studied in orchardgrass. The recent release of the complete genome sequence of orchardgrass provided a basic platform for the investigation of DgNAC proteins. RESULTS: Using the recently released orchardgrass genome database, a total of 108 NAC (DgNAC) genes were identified in the orchardgrass genome database and named based on their chromosomal location. Phylogenetic analysis showed that the DgNAC proteins were distributed in 14 subgroups based on homology with NAC proteins in Arabidopsis, including the orchardgrass-specific subgroup Dg_NAC. Gene structure analysis suggested that the number of exons varied from 1 to 15, and multitudinous DgNAC genes contained three exons. Chromosomal mapping analysis found that the DgNAC genes were unevenly distributed on seven orchardgrass chromosomes. For the gene expression analysis, the expression levels of DgNAC genes in different tissues and floral bud developmental stages were quite different. Quantitative real-time PCR analysis showed distinct expression patterns of 12 DgNAC genes in response to different abiotic stresses. The results from the RNA-seq data revealed that orchardgrass-specific NAC exhibited expression preference or specificity in diverse abiotic stress responses, and the results indicated that these genes may play an important role in the adaptation of orchardgrass under different environments. CONCLUSIONS: In the current study, a comprehensive and systematic genome-wide analysis of the NAC gene family in orchardgrass was first performed. A total of 108 NAC genes were identified in orchardgrass, and the expression of NAC genes during plant growth and floral bud development and response to various abiotic stresses were investigated. These results will be helpful for further functional characteristic descriptions of DgNAC genes and the improvement of orchardgrass in breeding programs.


Assuntos
Dactylis , Fatores de Transcrição , Dactylis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
BMC Genomics ; 22(1): 568, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301177

RESUMO

BACKGROUND: Drought is one of the major environmental stresses resulting in a huge reduction in crop growth and biomass production. Pearl millet (Pennisetum glaucum L.) has excellent drought tolerance, and it could be used as a model plant to study drought resistance. The root is a very crucial part of plant that plays important roles in plant growth and development, which makes it a focus of research. RESULTS: In this study, we explored the mechanism of drought tolerance of pearl millet by comparing physiological and transcriptomic data under normal condition and drought treatment at three time points (1 h, 3 h and 7 h) in the root during the seedling stage. The relative electrical conductivity went up from 1 h to 7 h in both control and drought treatment groups while the content of malondialdehyde decreased. A total of 2004, 1538 and 605 differentially expressed genes were found at 1 h, 3 h and 7 h respectively and 12 genes showed up-regulation at all time points. Some of these differentially expressed genes were significantly enriched into 'metabolic processes', 'MAPK signaling pathway' and 'plant hormone signal transduction' such as the ABA signal transduction pathway in GO and KEGG enrichment analysis. CONCLUSIONS: Pearl millet was found to have a quick drought response, which may occur before 1 h that contributes to its tolerance against drought stress. These results can provide a theoretical basis to enhance the drought resistance in other plant species.


Assuntos
Pennisetum , Secas , Regulação da Expressão Gênica de Plantas , Pennisetum/genética , Plântula/genética , Estresse Fisiológico , Transcriptoma
17.
Ecotoxicol Environ Saf ; 221: 112445, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34182199

RESUMO

Miscanthus sinensis is a C4 perennial grass species that is widely used as forage, ornamental grass and bioenergy crop due to its broad adaption and great biological traits. Recent studies indicated that M. sinensis could also grow in marginal lands which were contaminated with heavy metals, and exhibited important ecological restoration potential. In this study, transcriptome characterization of candidate genes related to chromium (Cr) uptake, transport and accumulation in M. sinensis were employed to investigate the molecular mechanism of plant tolerance to heavy metal stress. The result showed that following treatment of 200 mg/L of Cr, plant roots could accumulate most Cr and localize mainly in cell walls and soluble fractions, whereas Cr in stems and leaves was primarily in soluble fractions. A total of 83,645 differentially expressed genes (DEGs) were obtained after the treatment. Many genes involved in heavy metal transport, metal ion chelation and photosynthesis were found to be Cr-induced DEGs. Co-expression and weighted correlation network analysis revealed that Glutathion metabolism and ABC transporters pathways play an important role in Cr tolerance of M. sinensis. A hypothesis schematic diagram for the Cr uptake, transport and accumulation of M. sinensis cells were suggested, which could provide a molecular and genetic basis for future candidate genes validation and breeding of such crops.


Assuntos
Adaptação Fisiológica/genética , Cromo/metabolismo , Genes de Plantas/genética , Poaceae/genética , Poaceae/metabolismo , Transcriptoma/efeitos dos fármacos , Fenótipo , Fotossíntese , Melhoramento Vegetal , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma/genética
18.
Genomics ; 112(6): 4224-4231, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32640275

RESUMO

NAC is one of the largest family of plant-specific transcription factors, and it plays important roles in plant development and stress responses. The study identified 72 LpNACs genes from the perennial ryegrass genome database. Gene length, MW and pI of NAC family transcription factors varied, but the gene structure and motifs were relatively conserved in bioinformatics analysis. Phylogenetic analyses of perennial ryegrass, rice and Arabidopsis were performed to study the evolutionary and functional relationships in various species. The expression of LpNAC genes that respond to various abiotic stresses including high salinity, ABA, high temperature, polyethylene glycol (PEG) and heavy metal was comprehensively analyzed. The present study provides a basic understanding of the NAC gene family in perennial ryegrass for further abiotic stress studies and improvements in breeding.


Assuntos
Lolium/genética , Família Multigênica , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Motivos de Aminoácidos , Genes de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Transcriptoma
19.
BMC Plant Biol ; 20(1): 369, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758131

RESUMO

BACKGROUND: Tillering is an important agronomic trait underlying the yields and reproduction of orchardgrass (Dactylis glomerata), an important perennial forage grass. Although some genes affecting tiller initiation have been identified, the tillering regulatory network is still largely unknown, especially in perennial forage grasses. Thus, unraveling the regulatory mechanisms of tillering in orchardgrass could be helpful in developing selective strategies for high-yield perennial grasses. In this study, we generated high-throughput RNA-sequencing data from multiple tissues of tillering stage plants to identify differentially expressed genes (DEGs) between high- and low-tillering orchardgrass genotypes. Gene Ontology and pathway enrichment analyses connecting the DEGs to tillering number diversity were conducted. RESULTS: In the present study, approximately 26,282 DEGs were identified between two orchardgrass genotypes, AKZ-NRGR667 (a high-tillering genotype) and D20170203 (a low-tillering genotype), which significantly differed in tiller number. Pathway enrichment analysis indicated that DEGs related to the biosynthesis of three classes of phytohormones, i.e., strigolactones (SLs), abscisic acid (ABA), and gibberellic acid (GA), as well as nitrogen metabolism dominated such differences between the high- and low-tillering genotypes. We also confirmed that under phosphorus deficiency, the expression level of the major SL biosynthesis genes encoding DWARF27 (D27), 9-cis-beta-carotene 9',10'-cleaving dioxygenase (CCD7), carlactone synthase (CCD8), and more axillary branching1 (MAX1) proteins in the high-tillering orchardgrass genotype increased more slowly relative to the low-tillering genotype. CONCLUSIONS: Here, we used transcriptomic data to study the tillering mechanism of perennial forage grasses. We demonstrated that differential expression patterns of genes involved in SL, ABA, and GA biosynthesis may differentiate high- and low-tillering orchardgrass genotypes at the tillering stage. Furthermore, the core SL biosynthesis-associated genes in high-tillering orchardgrass were more insensitive than the low-tillering genotype to phosphorus deficiency which can lead to increases in SL biosynthesis, raising the possibility that there may be distinct SL biosynthesis way in tillering regulation in orchardgrass. Our research has revealed some candidate genes involved in the regulation of tillering in perennial grasses that is available for establishment of new breeding resources for high-yield perennial grasses and will serve as a new resource for future studies into molecular mechanism of tillering regulation in orchardgrass.


Assuntos
Dactylis/genética , Genes de Plantas , Dactylis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genótipo , RNA de Plantas , RNA-Seq , Transcriptoma
20.
Plant Biotechnol J ; 18(2): 373-388, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31276273

RESUMO

Orchardgrass (Dactylis glomerata L.) is an important forage grass for cultivating livestock worldwide. Here, we report an ~1.84-Gb chromosome-scale diploid genome assembly of orchardgrass, with a contig N50 of 0.93 Mb, a scaffold N50 of 6.08 Mb and a super-scaffold N50 of 252.52 Mb, which is the first chromosome-scale assembled genome of a cool-season forage grass. The genome includes 40 088 protein-coding genes, and 69% of the assembled sequences are transposable elements, with long terminal repeats (LTRs) being the most abundant. The LTRretrotransposons may have been activated and expanded in the grass genome in response to environmental changes during the Pleistocene between 0 and 1 million years ago. Phylogenetic analysis reveals that orchardgrass diverged after rice but before three Triticeae species, and evolutionarily conserved chromosomes were detected by analysing ancient chromosome rearrangements in these grass species. We also resequenced the whole genome of 76 orchardgrass accessions and found that germplasm from Northern Europe and East Asia clustered together, likely due to the exchange of plants along the 'Silk Road' or other ancient trade routes connecting the East and West. Last, a combined transcriptome, quantitative genetic and bulk segregant analysis provided insights into the genetic network regulating flowering time in orchardgrass and revealed four main candidate genes controlling this trait. This chromosome-scale genome and the online database of orchardgrass developed here will facilitate the discovery of genes controlling agronomically important traits, stimulate genetic improvement of and functional genetic research on orchardgrass and provide comparative genetic resources for other forage grasses.


Assuntos
Dactylis , Evolução Molecular , Flores , Redes Reguladoras de Genes , Dactylis/genética , Flores/genética , Repetições de Microssatélites , Fenótipo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA