Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 36(3): 334-345, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011581

RESUMO

Precise positioning of cells is crucial for metazoan development. Despite immense progress in the elucidation of the attractive cues of cell migration, the repulsive mechanisms that prevent the formation of secondary leading edges remain less investigated. Here, we demonstrate that Caenorhabditis elegans Hippo kinases promote cell migration along the anterior-posterior body axis via the inhibition of dorsal-ventral (DV) migration. Ectopic DV polarization was also demonstrated in gain-of-function mutant animals for C. elegans RhoG MIG-2. We identified serine 139 of MIG-2 as a novel conserved Hippo kinase phosphorylation site and demonstrated that purified Hippo kinases directly phosphorylate MIG-2S139 Live imaging analysis of genome-edited animals indicates that MIG-2S139 phosphorylation impedes actin assembly in migrating cells. Intriguingly, Hippo kinases are excluded from the leading edge in wild-type cells, while MIG-2 loss induces uniform distribution of Hippo kinases. We provide evidence that Hippo kinases inhibit RhoG activity locally and are in turn restricted to the cell body by RhoG-mediated polarization. Therefore, we propose that the Hippo-RhoG feedback regulation maintains cell polarity during directional cell motility.


Assuntos
Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Movimento Celular , Polaridade Celular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Retroalimentação Fisiológica , Fosforilação , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas rac de Ligação ao GTP/metabolismo
2.
Development ; 140(18): 3838-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23946438

RESUMO

Neuroblasts generate neurons with different functions by asymmetric cell division, cell cycle exit and differentiation. The underlying transcriptional regulatory pathways remain elusive. Here, we performed genetic screens in C. elegans and identified three evolutionarily conserved transcription factors (TFs) essential for Q neuroblast lineage progression. Through live cell imaging and genetic analysis, we showed that the storkhead TF HAM-1 regulates spindle positioning and myosin polarization during asymmetric cell division and that the PAR-1-like kinase PIG-1 is a transcriptional regulatory target of HAM-1. The TEAD TF EGL-44, in a physical association with the zinc-finger TF EGL-46, instructs cell cycle exit after the terminal division. Finally, the Sox domain TF EGL-13 is necessary and sufficient to establish the correct neuronal fate. Genetic analysis further demonstrated that HAM-1, EGL-44/EGL-46 and EGL-13 form three transcriptional regulatory pathways. We have thus identified TFs that function at distinct developmental stages to ensure appropriate neuroblast lineage progression and suggest that their vertebrate homologs might similarly regulate neural development.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Linhagem da Célula/genética , Redes Reguladoras de Genes/genética , Estágios do Ciclo de Vida/genética , Neurônios/citologia , Transcrição Gênica , Animais , Divisão Celular Assimétrica/genética , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Polaridade Celular/genética , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos/genética , Mutação/genética , Miosinas/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(27): 11175-80, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23784779

RESUMO

Directional cell migration is a fundamental process in neural development. In Caenorhabditis elegans, Q neuroblasts on the left (QL) and right (QR) sides of the animal generate cells that migrate in opposite directions along the anteroposterior body axis. The homeobox (Hox) gene lin-39 promotes the anterior migration of QR descendants (QR.x), whereas the canonical Wnt signaling pathway activates another Hox gene, mab-5, to ensure the QL descendants' (QL.x) posterior migration. However, the regulatory targets of LIN-39 and MAB-5 remain elusive. Here, we showed that MIG-13, an evolutionarily conserved transmembrane protein, cell-autonomously regulates the asymmetric distribution of the actin cytoskeleton in the leading migratory edge. We identified mig-13 as a cellular target of LIN-39 and MAB-5. LIN-39 establishes QR.x anterior polarity by binding to the mig-13 promoter and promoting mig-13 expression, whereas MAB-5 inhibits QL.x anterior polarity by associating with the lin-39 promoter and downregulating lin-39 and mig-13 expression. Thus, MIG-13 links the Wnt signaling and Hox genes that guide migrations, to the actin cytoskeleton, which executes the motility response in neuronal migration.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Genes de Helmintos , Genes Homeobox , Proteínas de Membrana/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Padronização Corporal/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Proteínas de Membrana/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Via de Sinalização Wnt
4.
Dev Cell ; 30(5): 625-36, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25155554

RESUMO

Conditional gene knockout animals are valuable tools for studying the mechanisms underlying cell and developmental biology. We developed a conditional knockout strategy by spatiotemporally manipulating the expression of an RNA-guided DNA endonuclease, CRISPR-Cas9, in Caenorhabditis elegans somatic cell lineages. We showed that this somatic CRISPR-Cas9 technology provides a quick and efficient approach to generate conditional knockouts in various cell types at different developmental stages. Furthermore, we demonstrated that this method outperforms our recently developed somatic TALEN technique and enables the one-step generation of multiple conditional knockouts. By combining these techniques with live-cell imaging, we showed that an essential embryonic gene, Coronin, which is associated with human neurobehavioral dysfunction, regulates actin organization and cell morphology during C. elegans postembryonic neuroblast migration and neuritogenesis. We propose that the somatic CRISPR-Cas9 platform is uniquely suited for conditional gene editing-based biomedical research.


Assuntos
Caenorhabditis elegans/embriologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas dos Microfilamentos/genética , Neurogênese/fisiologia , Neurônios/fisiologia , Actinas/química , Animais , Linhagem da Célula , Movimento Celular , Citoesqueleto/metabolismo , Técnicas de Inativação de Genes , Engenharia Genética , Proteínas de Choque Térmico , Mitose , Mutação
5.
Nat Biotechnol ; 31(10): 934-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23955274

RESUMO

We have developed a method for the generation of conditional knockouts in Caenorhabditis elegans by expressing transcription activator-like effector nucleases (TALENs) in somatic cells. Using germline transformation with plasmids encoding TALENs under the control of an inducible or tissue-specific promoter, we observed effective gene modifications and resulting phenotypes in specific developmental stages and tissues. We further used this method to bypass the embryonic requirement of cor-1, which encodes the homolog of human severe combined immunodeficiency (SCID) protein coronin, and we determined its essential role in cell migration in larval Q-cell lineages. Our results show that TALENs expressed in the somatic cells of model organisms provide a versatile tool for functional genomics.


Assuntos
Caenorhabditis elegans/genética , Desoxirribonucleases/metabolismo , Genoma Helmíntico/genética , Edição de RNA/genética , Transativadores/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/citologia , Linhagem da Célula , Movimento Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/metabolismo , Mecanotransdução Celular , Dados de Sequência Molecular , Mutação/genética , Neurônios/citologia , Neurônios/metabolismo , Proteína Vermelha Fluorescente
6.
Nat Protoc ; 7(12): 2090-102, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23138350

RESUMO

Postembryonic development is an important process of organismal maturation after embryonic growth. Despite key progress in recent years in understanding embryonic development via fluorescence time-lapse microscopy, comparatively less live-cell imaging of postembryonic development has been done. Here we describe a protocol to image larval development in the nematode Caenorhabditis elegans. Our protocol describes the construction of fluorescent transgenic C. elegans, immobilization of worm larvae and time-lapse microscopy analysis. To improve the throughput of imaging, we developed a C. elegans triple-fluorescence imaging approach with a worm-optimized blue fluorescent protein (TagBFP), green fluorescent protein (GFP) and mCherry. This protocol has been previously applied to time-lapse imaging analysis of Q neuroblast asymmetric division, migration and apoptosis, and we show here that it can also be used to image neuritogenesis in the L1 larvae. Other applications are also possible. The protocol can be completed within 3 h and may provide insights into understanding postembryonic development.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Biologia do Desenvolvimento/métodos , Imagem Óptica/métodos , Imagem com Lapso de Tempo/métodos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Corantes Fluorescentes , Larva/crescimento & desenvolvimento , Larva/metabolismo
7.
J Cell Biol ; 199(7): 1047-55, 2012 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-23253479

RESUMO

Cell death genes are essential for apoptosis and other cellular events, but their nonapoptotic functions are not well understood. The midbody is an important cytokinetic structure required for daughter cell abscission, but its fate after cell division remains elusive in metazoans. In this paper, we show through live-imaging analysis that midbodies generated by Q cell divisions in Caenorhabditis elegans were released to the extracellular space after abscission and subsequently internalized and degraded by the phagocyte that digests apoptotic Q cell corpses. We further show that midbody degradation is defective in apoptotic cell engulfment mutants. Externalized phosphatidylserine (PS), an engulfment signal for corpse phagocytosis, exists on the outer surface of the midbody, and inhibiting PS signaling delayed midbody clearance. Thus, our findings uncover a novel function of cell death genes in midbody internalization and degradation after cell division.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Caenorhabditis elegans/citologia , Citocinese , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Cinética , Larva/citologia , Larva/genética , Larva/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Fagocitose , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Transdução de Sinais , Imagem com Lapso de Tempo , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA