Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Org Lett ; 26(11): 2271-2275, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38457924

RESUMO

A clean and direct three-component radical 1,2-difunctionalization of various alkenes with perfluoroalkyl iodides and thiosulfonates enabled by the electron donor-acceptor complex has been developed under light illumination at room temperature. The approach offers a convenient and environmentally friendly route for the simultaneous incorporation of Csp3-Rf and Csp3-S bonds, affording valuable polyfunctionalized alkane derivatives containing fluorine and sulfur in satisfactory yields. Consequently, this methodology holds significant value and practicality in the field of organic synthesis.

2.
Environ Technol ; : 1-9, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522072

RESUMO

The overuse of tetracycline (TC) has led to the accumulation of antibiotic residues in drinking water and animal products, which can consequently lead to bacteria resistance and chronic disease in humans. Urgently addressing the need for a rapid, user-friendly, and point-of-care test for TC detection. In this work, we use cyclen and citric acid to synthesise carbon dots (CDs) with a unique ring-shaped structure on their surface and combine them with europium (Eu3+) to form an Eu-CDs fluorescent probe. In the presence of TC in aqueous systems, the Eu-CDs probe emits two distinctive fluorescent signals: the stable blue emission from cyclen-modified CDs and the red emission from Eu3+,showing a proportional increase with TC concentration. The developed Eu-CDs probe demonstrates accurate and selective detection capabilities for TC class antibiotics among various interfering factors. The Eu-CDs probe exhibits excellent linearity within the concentration range of 0.04-2.4 µM and achieves an impressive detection limit of 2.7 nM. Moreover, point-of-care Eu-CDs test strips are designed, allowing convenient on-site TC analysis through the detection of a colour change from blue to red under a portable UV light. The results highlight the effectiveness of the proposed dual-mode ratiometric fluorescent Eu-CDs probe and test strips, offering a practical point-of-care testing strategy for real-world TC detection applications.

3.
Talanta ; 279: 126493, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39018946

RESUMO

Effective identification of sulfur ions (S2-) in foodstuff is crucial for food safety and human health, but it remains challenging. Traditional single-mode colorimetric sensing methods are simple and sensitive, but are prone to interference from colored substances which can lead to false positives or negatives results. Herein, we develop a novel "mix-response" biosensor for colorimetric and photothermal dual-mode detection of S2- with good simplicity, sensitivity and portability. In this biosensor, silver-doping Prussian blue nanoparticle (SPB NPs) was used as signal output component, which not only exhibits blue color characteristics, but also has photothermal conversion properties activated by near-infrared (NIR) laser. Upon increasing the S2- concentration, the prepared SPB NPs undergo etching, leading to the formation of new silver sulfide precipitation (Ag2S), along with different colorimetric and photothermal response signals. For the portable visualization of S2-, the color information was recorded by a smartphone in combination with RGB (red channel) analysis and the evolution of the photothermal signal was documented by a thermal imager. The introduction of smartphone and handheld thermal imager in this "mix-response" biosensor makes it suitable for on-site quantitative detection of S2- without sophisticated instrument. Moreover, the development of this "mix-response" biosensor does not need the use of recognition probes (e.g. aptamers and reaction intermediates), thereby simplifying the construct procedures of sensing strategies and improving the economic efficiency of detection. More importantly, the photothermal response signals can overcome the interference of colored substances in foods, thereby reducing the false positives or negatives of the detection results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA