Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Environ Sci Technol ; 58(22): 9792-9803, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780952

RESUMO

Anaerobic fermentation is a crucial route to realize effective waste activated sludge (WAS) resource recovery and utilization, while the overall efficiency is commonly restrained by undesirable disruptors (i.e., chemical dewatering agents). This work unveiled the unexpectedly positive effects of biodewatering tannic acid (TA) on the volatile fatty acids (VFAs) biosynthesis during WAS anaerobic fermentation. The total VFAs yield was remarkably increased by 15.6 folds with enriched acetate and butyrate in TA-occurred systems. TA was capable to disintegrate extracellular polymeric substances to promote the overall organics release. However, TA further modulated the soluble proteins structure by hydrogen bonding and hydrophobic interactions, resulting in the decrease of proteins bioavailability and consequential alteration of metabolic substrate feature. These changes reshaped the microbial community and stimulated adaptive regulatory systems in hydrolytic-acidogenic bacteria. The keystone species for carbohydrate metabolism (i.e., Solobacterium and Erysipelotrichaceae) were preferentially enriched. Also, the typical quorum sensing (i.e., enhancing substrate transport) and two-component systems (i.e., sustaining high metabolic activity) were activated to promote the microbial networks connectivity and ecological cooperative behaviors in response to TA stress. Additionally, the metabolic functions responsible for carbohydrate hydrolysis, transmembrane transport, and intracellular metabolism as well as VFA biosynthesis showed increased relative abundance, which maintained high microbial activities for VFAs biosynthesis. This study underscored the advantages of biodewatering TA for WAS treatment in the context of resource recovery and deciphered the interactive mechanisms.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Taninos , Ácidos Graxos Voláteis/metabolismo , Esgotos/microbiologia , Taninos/metabolismo , Anaerobiose , Microbiota
2.
Environ Res ; 235: 116642, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442259

RESUMO

Nitrogen-doped graphene (NG) was synthesized via direct thermal annealing treatment. The obtained NG showed outstanding removal ability for tetracycline (TC) ascribed to enhanced adsorption and persulfate activation. The maximum TC adsorption capacity calculated from the Langmuir model of NG was 227.3 mg/g, which was 1.66 times larger than nitrogen-free graphene. The coexistence of NG and persulfate (PS) exhibited complete degradation of TC within 120 min attributed to the successful modification of nitrogen. Further analysis demonstrated that non-radical electron transfer was the dominant degradation pathway, which was different from the widely acknowledgeable radical mechanism. An electron donor-mediator-acceptor system was introduced, in which TC, NG, and PS performed as electron donor, mediator, and acceptor, respectively. The potential intermediates in the TC degradation process were detected and toxicity assessment was also performed. In addition, more than 75.8% of total organic carbon was removed, and excellent reusability was manifested in multiple adsorption and degradation experiments.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Nitrogênio , Antibacterianos , Tetraciclina/análise , Oxidantes , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 56(10): 6466-6478, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35512279

RESUMO

The dissemination of plasmid-borne antibiotic resistance genes (ARGs) in wastewater is becoming an urgent concern. Previous studies mainly focused on the effects of coexisting contaminants on plasmid conjugation, but ignored the potential contribution of some byproducts inevitably released from wastewater treatment processes. Herein, we demonstrate for the first time that nitric oxide (NO), an intermediate of the wastewater nitrogen cycle, can significantly boost the conjugative transfer of plasmid RP4 from Escherichia coli K12 to different recipients (E. coli HB101, Salmonella typhimurium, and wastewater microbiota). Phenotypic and genotypic tests confirmed that NO-induced promotion was not attributed to the SOS response, a well-recognized driver for horizontal gene transfer. Instead, NO exposure increased the outer membrane permeability of both the donor and recipient by inhibiting the expression of key genes involved in lipopolysaccharide biosynthesis (such as waaJ), thereby lowering the membrane barrier for conjugation. On the other hand, NO exposure not only resulted in the accumulation of intracellular tryptophan but also triggered the deficiency of intracellular methionine, both of which were validated to play key roles in regulating the global regulatory genes (korA, korB, and trbA) of plasmid RP4, activating its encoding transfer apparatus (represented by trfAp and trbBp). Overall, our findings highlighted the risks of NO in spreading ARGs among wastewater microbiota and updated the regulation mechanism of plasmid conjugation.


Assuntos
Escherichia coli , Microbiota , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Transferência Genética Horizontal , Genes Bacterianos , Óxido Nítrico , Plasmídeos , Águas Residuárias
4.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741616

RESUMO

Lactate-driven chain elongation (LCE) has emerged as a new biotechnology to upgrade organic waste streams into a valuable biochemical and fuel precursor, medium-chain carboxylate, n-caproate. Considering that a low cost of downstream extraction is critical for biorefinery technology, a high concentration of n-caproate production is very important to improve the scale-up of the LCE process. We report here that in a nonsterile open environment, the n-caproate concentration was increased from the previous record of 25.7 g·liter-1 to a new high level of 33.7 g·liter-1 (76.8 g chemical oxygen demand [COD]·liter -1), with the highest production rate being 11.5 g·liter-1·day-1 (26.2 g COD·liter -1·day-1). In addition, the LCE process remained stable, with an average concentration of n-caproate production of 20.2 ± 5.62 g·liter-1 (46.1 ± 12.8 g COD·liter -1) for 780 days. Dynamic changes in taxonomic composition integrated with metagenomic data reveal the microbial ecology for long-term production of high concentrations of n-caproate: (i) the core microbiome is related to efficient functional groups, such as Ruminococcaceae (with functional strain CPB6); (ii) the core bacteria can maintain stability for long-term operation; (iii) the microbial network has relatively low microbe-microbe interaction strength; and (iv) low relative abundance and variety of competitors. The network structure could be shaped by hydraulic retention time (HRT) over time, and long-term operation at an HRT of 8 days displayed higher efficacy.IMPORTANCE Our research revealed the microbial network of the LCE reactor microbiome for n-caproate production at high concentrations, which will provide a foundation for designing or engineering the LCE reactor microbiome to recover n-caproate from organic waste streams in the future. In addition, the hypothetical model of the reactor microbiome that we proposed may offer guidance for researchers to find the underlying microbial mechanism when they encounter low-efficiency n-caproate production from the LCE process. We anticipate that our research will rapidly advance LCE biotechnology with the goal of promoting the sustainable development of human society.


Assuntos
Fenômenos Fisiológicos Bacterianos , Reatores Biológicos/microbiologia , Caproatos/metabolismo , Clostridiales/fisiologia , Ácido Láctico/química , Microbiota , Biodegradação Ambiental , Fermentação
5.
J Cell Mol Med ; 24(23): 13648-13659, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33150736

RESUMO

It remains unclear whether the necessity of calcified mellitus induced by high inorganic phosphate (Pi) is required and the roles of autophagy plays in aldosterone (Aldo)-enhanced vascular calcification (VC) and vascular smooth muscle cell (VSMC) osteogenic differentiation. In the present study, we found that Aldo enhanced VC both in vivo and in vitro only in the presence of high Pi, alongside with increased expression of VSMC osteogenic proteins (BMP2, Runx2 and OCN) and decreased expression of VSMC contractile proteins (α-SMA, SM22α and smoothelin). However, these effects were blocked by mineralocorticoid receptor inhibitor, spironolactone. In addition, the stimulatory effects of Aldo on VSMC calcification were further accelerated by the autophagy inhibitor, 3-MA, and were counteracted by the autophagy inducer, rapamycin. Moreover, inhibiting adenosine monophosphate-activated protein kinase (AMPK) by Compound C attenuated Aldo/MR-enhanced VC. These results suggested that Aldo facilitates high Pi-induced VSMC osteogenic phenotypic switch and calcification through MR-mediated signalling pathways that involve AMPK-dependent autophagy, which provided new insights into Aldo excess-associated VC in various settings.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aldosterona/metabolismo , Autofagia , Fosfatos/metabolismo , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Aldosterona/farmacologia , Animais , Autofagia/efeitos dos fármacos , Biomarcadores , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Expressão Gênica , Genes Reporter , Camundongos , Modelos Biológicos , Osteogênese/efeitos dos fármacos , Fosfatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Calcificação Vascular/patologia
6.
Environ Sci Technol ; 50(13): 6921-9, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27267805

RESUMO

Till now, almost all the studies on anaerobic fermentation of waste activated sludge (WAS) for bioproducts generation focused on the influences of operating conditions, pretreatment methods and sludge characteristics, and few considered those of widespread persistent organic pollutants (POPs) in sludge, for example, polycyclic aromatic hydrocarbons (PAHs). Herein, phenanthrene, which was a typical PAH and widespread in WAS, was selected as a model compound to investigate its effect on WAS anaerobic fermentation for short-chain fatty acids (SCFAs) accumulation. Experimental results showed that the concentration of SCFAs derived from WAS was increased in the presence of phenanthrene during anaerobic fermentation. The yield of acetic acid which was the predominant SCFA in the fermentation reactor with the concentration of 100 mg/kg dry sludge was 1.8 fold of that in the control. Mechanism exploration revealed that the present phenanthrene mainly affected the acidification process of anaerobic fermentation and caused the shift of the microbial community to benefit the accumulation of acetic acid. Further investigation showed that both the activities of key enzymes (phosphotransacetylase and acetate kinase) involved in acetic acid production and the quantities of their corresponding encoding genes were enhanced in the presence of phenanthrene. Viability tests by determining the adenosine 5'-triphosphate content and membrane potential confirmed that the acetogens were more viable in anaerobic fermentation systems with phenanthrene, which resulted in the increased production of acetic acid.


Assuntos
Fermentação , Esgotos , Ácido Acético , Ácidos Graxos Voláteis/biossíntese , Hidrocarbonetos Policíclicos Aromáticos
7.
J Environ Sci (China) ; 48: 200-208, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27745665

RESUMO

Alkaline treatment with steel slag and NaOH addition were investigated under different pH conditions for the fermentation of waste activated sludge. Better performance was achieved in steel slag addition scenarios for both sludge hydrolysis and acidification. More solubilization of organic matters and much production of higher VFA (volatile fatty acid) in a shorter time can be achieved at pH10 when adjusted by steel slag. Higher enzyme activities were also observed in steel slag addition scenarios under the same pH conditions. Phosphorus concentration in the supernatant increased with fermentation time and pH in NaOH addition scenarios, while in contrast most phosphorus was released and captured by steel slag simultaneously in steel slag addition scenarios. These results suggest that steel slag can be used as a substitute for NaOH in sludge alkaline treatment.


Assuntos
Eliminação de Resíduos/métodos , Aço , Resíduos/análise , Ácidos Graxos Voláteis/química , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Fósforo , Hidróxido de Sódio/química
8.
World J Clin Cases ; 12(3): 601-606, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38322456

RESUMO

BACKGROUND: Polyneuropathy, organomegaly, endocrinopathy, M-protein, skin changes (POEMS) syndrome is a rare paraneoplastic syndrome that encompass multiple systems. The most common clinical symptoms of POEMS syndrome are progressive sensorimotor polyneuropathy, organ enlargement, endocrine disorders, darkening skin, a monoclonal plasma cell proliferative disorder, and lymph node hyperplasia. The organomegaly consists of hepatosplenomegaly and/or lymphadenopathy; cases of cardiomyopathy are rare. Diagnoses are often delayed because of the atypical nature of the syndrome, exposing patients to possibly severe disability. Therefore, identifying atypical symptoms can improve the prognosis and quality of life among POEMS syndrome patients. CASE SUMMARY: Herein, we report the case of a 59-year-old woman with POEMS syndrome that involved dilated cardiomyopathy. The patient presented to the hospital with complaints of shortness of breath and discomfort in the chest. The patient reported previous experiences of limb numbness. During hospitalization, the brain natriuretic peptide levels were 3504.0 pg/mL. Color doppler echocardiography showed an enlarged left side of the heart, along with ventricular wall hypokinesis and compromised functioning of the same side of the heart. Abdominal color ultrasonography revealed that the patient's spleen was enlarged. Observations from cardiac magnetic resonance imaging showed that the left side of the heart was enlarged. Slight myocardical fibrosis was also observed. Electromyography was described as a symmetric sensorimotor demyelinating polyneuropathy. Further immunoelectrophoresis of the serum showed the presence of a monoclonal IGA λ M protein. The vascular endothelial growth factor levels were 622.56 pg/mL. Flow cytometric and immunohistochemical staining of the bone marrow detected no monoclonal plasma cells. Finally, the patient was diagnosed with POEMS syndrome associated with dilated cardiomyopathy. The chest-related discomfort and the shortness of breath resolved after the administration of lenalidomide and dexamethasone. CONCLUSION: When patients with cardiomyopathy have systemic manifestations such as numb limbs and darkening skin, the POEMS syndrome is the most possible diagnosis.

9.
Water Res ; 260: 121930, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38908316

RESUMO

Various pretreatments are commonly adopted to facilitate dissolved organic matter (DOM) release from waste activated sludge (WAS) for high-valued volatile fatty acids (VFAs) promotion, while the interplay impact of DOM dynamics transformation on microbial population and metabolic function traits is poorly understood. This work constructed "DOM-microorganisms-metabolism-VFAs" symbiotic ecologic networks to disclose how DOM dynamics variation intricately interacts with bacterial community networks, assembly processes, and microbial traits during WAS fermentation. The distribution of DOM was altered by different pretreatments, triggering the release of easily biodegradable compounds (O/C ratio > 0.3) and protein-like substance. This alteration greatly improved the substrates biodegradability (higher biological index) and upregulated microbial metabolism capacity (e.g., hydrolysis and fatty acid synthesis). In turn, microbial activity modifications augment substance metabolism level and expedite the conversion of highly reactive compounds (proteins-like DOM) to VFAs, leading to 1.6-4.2 fold rise in VFAs generation. Strong correlations were found between proteins-like DOM and topological properties of DOM-bacteria associations, suggesting that high DOM availability leads to more intricate ecological networks. A change in the way communities assemble, shifting from stronger uniform selection in pH10 and USp reactors to increased randomness in heat reactor, was linked to DOM composition alterations. The ecologic networks further revealed metabolic synergy between hydrolytic-acidogenic bacteria (e.g., Bacteroidota and Firmicutes) and biodegradable DOM (e.g., proteins and amino sugars) leading to higher VFAs generation. This study provides a deeper knowledge of the inherent connections between DOM and microbial traits for efficient VFAs biosynthesis during WAS anaerobic fermentation, offering valuable insights for effective WAS pretreatment strategies.

10.
Water Res ; 251: 121139, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237458

RESUMO

In the post-COVID-19 pandemic era, various antimicrobials have emerged and concentrated in waste-activated sludge (WAS), affecting the biological treatment of WAS. However, there is still a knowledge gap in the dynamic response and adaptive mechanism of anaerobic microbiome under exogenous antimicrobial stress. This study found that methylisothiazolinone (MIT, as a typic antimicrobial) caused an interesting lag effect on the volatile fatty acids (VFAs) promotion in the WAS anaerobic fermentation process. MIT was effective to disintegrate the extracellular polymeric substances (EPS), and those functional anaerobic microorganisms were easily exposed and negatively impacted by the MIT interference after the loss of protective barriers. Correspondingly, the ecological interactions and microbial metabolic functions related to VFA biosynthesis (e.g., pyruvate metabolism) were downregulated at the initial stage. The syntrophic consortia gradually adapted to the interference and attenuated the MIT stress by activating chemotaxis and resistance genes (e.g., excreting, binding, and inactivating). Due to the increased bioavailable substrates in the fermentation systems, the dominant microorganisms (i.e., Clostridium and Caloramator) with both VFAs production and MIT-tolerance functions have been domesticated. Moreover, MIT disrupted the syntrophic interaction between acetogens and methanogens and totally suppressed methanogens' metabolic activities. The VFA production derived from WAS anaerobic fermentation was therefore enhanced due to the interference of antimicrobial MIT stress. This work deciphered dynamic changes and adaptive evolution of anaerobic syntrophic consortia in response to antimicrobial stress and provided guidance on the evaluation and control of the ecological risks of exogenous pollutants in WAS treatment.


Assuntos
Anti-Infecciosos , Microbiota , Tiazóis , Humanos , Fermentação , Anaerobiose , Esgotos/química , Pandemias , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio
11.
Bioresour Technol ; 395: 130367, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266788

RESUMO

The impact and mechanism of fluoranthene (Flr), a typical polycyclic aromatic hydrocarbon highly detected in sludge, on alkaline fermentation for volatile fatty acids (VFAs) recovery and antibiotic resistance genes (ARGs) transfer were studied. The results demonstrated that VFAs production increased from 2189 to 4272 mg COD/L with a simultaneous reduction of ARGs with Flr. The hydrolytic enzymes and genes related to glucose and amino acid metabolism were provoked. Also, Flr benefited for the enrichment of hydrolytic-acidifying consortia (i.e., Parabacteroides and Alkalibaculum) while reduced VFAs consumers (i.e., Rubrivivax) and ARGs potential hosts (i.e., Rubrivivax and Pseudomonas). Metagenomic analysis indicated that the genes related to cell wall synthesis, biofilm formation and substrate transporters to maintain high VFAs-producer activities were upregulated. Moreover, cell functions of efflux pump and Type IV secretion system were suppressed to inhibit ARGs proliferation. This study provided intrinsic mechanisms of Flr-induced VFAs promotion and ARGs reduction during alkaline fermentation.


Assuntos
Antibacterianos , Fluorenos , Esgotos , Fermentação , Esgotos/química , Consórcios Microbianos , Ácidos Graxos Voláteis , Resistência Microbiana a Medicamentos , Concentração de Íons de Hidrogênio
12.
Environ Sci Technol ; 47(6): 2688-95, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23398351

RESUMO

Recently, the reuse of waste activated sludge to produce short-chain fatty acids (SCFA) has attracted much attention. However, the influences of sludge characteristics, especially polyhydroxyalkanoates (PHA) and Gram-staining bacteria, on SCFA production have seldom been investigated. It was found in this study that during sludge anaerobic fermentation not only the fermentation time but also the SCFA production were different between two sludges, which had different PHA contents and Gram-negative bacteria to Gram-positive bacteria (GNB/GPB) ratios and were generated respectively from the anaerobic/oxic (AO) and aerobic/extended-idle (AEI) biological phosphorus removal processes. The optimal fermentation time for the AEI and AO sludges was respectively 4 and 8 d, and the corresponding SCFA production was 304.6 and 231.0 mg COD/g VSS (volatile suspended solids) in the batch test and 143.4 and 103.9 mg COD/g VSS in the semicontinuous experiment. The mechanism investigation showed that the AEI sludge had greater PHA content and GNB/GPB ratio, and the increased PHA content accelerated cell lysis and soluble substrate hydrolysis while the increased GNB/GPB ratio benefited cell lysis. Denaturing gradient gel electrophoresis profiles revealed that the microbial community in the AEI sludge fermentation reactor was dominated by Clostridium sp., which was reported to be SCFA-producing microbes. Further enzyme analyses indicated that the activities of key hydrolytic and acids-forming enzymes in the AEI sludge fermentation reactor were higher than those in the AO one. Thus, less fermentation time was required, but higher SCFA was produced in the AEI sludge fermentation system.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Fósforo/isolamento & purificação , Poli-Hidroxialcanoatos/metabolismo , Esgotos/microbiologia , Bactérias/metabolismo , Clostridium/metabolismo , Fermentação , Violeta Genciana , Fenazinas , Esgotos/análise
13.
Water Sci Technol ; 68(4): 916-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23985524

RESUMO

Carbon, nitrogen, and phosphorus need to be recovered to reduce the environmental impact of waste activated sludge (WAS). In this study the improved short-chain fatty acid (SCFA) production from WAS by the addition of kitchen waste to adjust the ratio of carbon to nitrogen (C/N), and the efficient recovery of nitrogen and phosphorus from the fermentation liquid were reported. Firstly, the optimum conditions for SCFA production were found to be pH 8, temperature 35 °C, C/N ratio 21 mg-C/1 mg-N, and fermentation time 6 d, using the response surface methodology. After alkaline fermentation, the struvite precipitation method was applied to efficiently and simultaneously recover the released ammonia and phosphorus from the fermentation liquid. Finally, the fermentation liquid was used as the additional carbon source for biological nitrogen and phosphorus removal. It was observed that, compared with acetic acid, the use of fermentation liquid as carbon source showed greater removal efficiencies of total nitrogen and total phosphorus.


Assuntos
Carbono/química , Nitrogênio/química , Fósforo/química , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Fracionamento Químico , Conservação dos Recursos Naturais , Fermentação , Compostos de Magnésio/química , Fosfatos/química , Estruvita
14.
Water Res ; 233: 119817, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871384

RESUMO

Methanogen is a pivotal player in pollution treatment and energy recovery, and emerging pollutants (EPs) frequently occur in methanogen-applied biotechnology such as anaerobic digestion (AD). However, the direct effect and underlying mechanism of EPs on crucial methanogen involved in its application still remain unclear. The positive effect of chrysene (CH) on semi-continuous AD of sludge and the robust methanogen was dissected in this study. The methane yield in the digester with CH (100 mg/kg dry sludge) was 62.1 mL/g VS substrate, much higher than that in the control (46.1 mL/g VS substrate). Both methane production from acetoclastic methanogenesis (AM) and the AM proportion in the methanogenic pathway were improved in CH-shaped AD. Acetoclastic consortia, especially Methanosarcina and functional profiles of AM were enriched by CH in favor of the corresponding methanogenesis. Further, based on pure cultivation exposed to CH, the methanogenic performance, biomass, survivability and activity of typical Methanosarcina (M. barkeri) were boosted. Notably, iTRAQ proteomics revealed that the manufacturing (transcription and translation), expression and biocatalytic activity of acetoclastic metalloenzymes, particularly tetrahydromethanopterin S-methyltransferase and methyl-coenzyme M reductase with cobalt/nickel-cofactor (F430 and cobalamin), and acetyl-CoA decarbonylase/synthase with cobalt/nickel-active site, of M. barkeri were upregulated significantly with fold changes in the range of 1.21-3.20 due to the CH presence. This study shed light on EPs-affecting industrially crucial methanogen at the molecular biology level during AD and had implications in the technical relevance of methanogens.


Assuntos
Crisenos , Esgotos , Anaerobiose , Crisenos/metabolismo , Níquel , Proteômica , Methanosarcina/metabolismo , Metano/metabolismo , Reatores Biológicos
15.
Sci Total Environ ; 865: 161122, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587690

RESUMO

Fluorene (Flu) occurs widely in various environments and its toxicity to organisms is well-known. However, the impact of Flu on complicated biochemical processes involving functional microbial community has been reported rarely. In this study, the facilitation of Flu on the volatile fatty acids (VFAs) generation executed by acidogenic microbial population during sludge acidogenic fermentation (37 °C, SRT = 8 d, pH = 10.0) was investigated. The accumulation of VFAs (particularly acetic acid) increased initially and then declined with the increasing of Flu concentration (0-500 mg/kg dry sludge), which reached a maximum (3211.1 mg COD/L) as Flu content was 200 mg/kg dry sludge. The Flu-enhanced VFAs production was primarily attributed to the shift of hydrolysis/acidification, as well as the corresponding functional microbial community and the activity of enzymes. Based on the metagenomics analysis, the conversion of organic substrates, i.e. amino acid and monosaccharide, into VFAs embraced in hydrolysis/acidification shaped by Flu was constructed at the genetic level. The relative abundances of genes included in aminotransfer and deamination process of amino acid and glycolysis of monosaccharide into VFA-precursors (pyruvate, acetyl-CoA and propionyl-CoA), and the further formation of VFAs were improved due to the Flu presence. This study shed light on the Flu-affected microbial processes at the molecular biology level during acidogenic fermentation and was of great significance in resource recovery of sludge containing persistent organic pollutants.


Assuntos
Aminoácidos , Esgotos , Fermentação , Esgotos/química , Monossacarídeos , Ácidos Graxos Voláteis , Ácidos , Fluorenos , Concentração de Íons de Hidrogênio , Reatores Biológicos
16.
Sci Total Environ ; 859(Pt 1): 160102, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36370796

RESUMO

As one of the most widely used phthalate plasticizers, dioctyl phthalate (DOP) has been detected in wastewater and accumulates in sludge through wastewater treatment, which may adversely affect further sludge treatment. However, the role of DOP on sludge anaerobic fermentation and its mechanism are not yet clear. Therefore, this study focused on the effect of DOP on the volatile fatty acids (VFAs) generation via the anaerobic fermentation of sludge. The results demonstrated that the presence of DOP had a considerable contribution to the generation of VFAs, and the maximum production of VFAs reached 4769 mg COD/L at 500 mg/kg DOP, which was 1.57 folds that of the control. Mechanistic investigation showed that DOP mainly enhanced the hydrolysis, acidification and related enzymes activities of sludge. VFAs-producing microorganisms (e.g., Clostridium and Conexibacter) were also enriched under DOP exposure. Importantly, the presence of DOP increased the electron transfer activity by 26 %, consequently facilitating the organics conversion and fermentation process. Notably, the functional gene expressions involved in substrate metabolism and VFAs biosynthesis were enhanced with DOP, resulting in increased VFAs production from sludge. The results obtained in this study offered a new strategy for the control of pollutants and the recycling of valuable products from sludge.


Assuntos
Dietilexilftalato , Esgotos , Esgotos/química , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Ácidos Graxos Voláteis/metabolismo , Fermentação , Anaerobiose , Reatores Biológicos
17.
Bioresour Technol ; 384: 129311, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37311531

RESUMO

The influence of phenanthrene (PHE), a general polycyclic aromatic hydrocarbon in waste activated sludge, on sludge alkaline dark fermentation for hydrogen accumulation was investigated prospectively. The yield of hydrogen was 16.2 mL/g TSS with 50 mg/kg TSS PHE, which was 1.3-fold greater than that of the control. Mechanism research demonstrated that hydrogen production and the abundance of functional microorganisms were facilitated, whereas those of homoacetogenesis were reduced. The activity of pyruvate ferredoxin oxidoreductase in the conversion of pyruvate to reduced ferredoxin for hydrogen production was promoted by 57.2%, and that of carbon monoxide dehydrogenase and formyltetrahydrofolate synthetase, closely associated with hydrogen consumption, was suppressed by 60.5% and 55.9%, respectively. Moreover, the encoding genes involved in pyruvate metabolism were significantly up-regulated, while genes related to consuming hydrogen to reduce carbon dioxide and produce 5-methyltetrahydrofolate were down-regulated. This study notably illustrates the effect of PHE on hydrogen accumulation from metabolic pathways.


Assuntos
Fenantrenos , Esgotos , Fermentação , Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Concentração de Íons de Hidrogênio , Piruvatos , Ácidos Graxos Voláteis , Anaerobiose
18.
Water Res ; 247: 120787, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918196

RESUMO

Harmless and resourceful treatment of waste activated sludge (WAS) have been the crucial goal for building environmental-friendly and sustainable society, while the synergistic realization approach is currently limited. This work skillfully utilized the disinfectant sodium dichloroisocyanurate (NaDCC) to simultaneously achieve the pathogenic potential inactivation (decreased by 60.1 %) and efficient volatile fatty acids (VFAs) recovery (increased by 221.9 %) during WAS anaerobic fermentation in rather cost-effective way (Chemicals costs:0.4 USD/kg VFAs versus products benefits: 2.68 USD/kg chemical). Mechanistic analysis revealed that the C=O and NCl bonds in NaDCC could spontaneously absorb sludge (binding energy -4.9 kJ/mol), and then caused the sludge disintegration and organic substrates release for microbial utilization due to the oxidizability of NaDCC. The disruption of sludge structure along with the increase of bioavailable fermentation substrates contributed to the selectively regulation of microbial community via enriching VFAs-forming microorganisms (e.g., Pseudomonas and Streptomyces) and reducing VFAs-consuming microorganisms, especially aceticlastic methanogens (e.g., Methanothrix and Methanospirillum). Correspondingly, the metabolic functions of membrane transport, substrate metabolism, pyruvate metabolism, and fatty acid biosynthesis locating in the central pathway of VFAs production were all upregulated while the methanogenic step was inhibited (especially acetate-type methanogenic pathway). Further exploration unveiled that for those enriched functional anaerobes were capable to activate the self-adaptive systems of DNA replication, SOS response, oxidative stress defense, efflux pump, and energy metabolism to counteract the unfavorable NaDCC stress and maintain high microbial activities for efficient VFAs yields. This study would provide a novel strategy for synergistic realization of harmless and resourceful treatment of WAS, and identify the interrelations between microbial metabolic regulations and adaptive responses.


Assuntos
Esgotos , Triazinas , Esgotos/química , Regulação para Cima , Fermentação , Ácidos Graxos Voláteis/metabolismo , Concentração de Íons de Hidrogênio , Anaerobiose
19.
Microbiol Spectr ; 11(1): e0481822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36625605

RESUMO

Enterotypes can be useful tools for studying the gut microbial community landscape, which is thought to play a crucial role in animal performance. However, few studies have been carried out to identify enterotypes and their associations with growth performance in young goats. In this study, two enterotypes were categorized in 76 goats: cluster 1 (n = 39) and cluster 2 (n = 37). Compared to cluster 2, cluster 1 had greater growth rates, the concentrations of acetate, propionate, valerate, and total volatile fatty acids (VFA) in the gut. Several serum glycolipid metabolism parameters, including glucose, total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), were also increased in cluster 1, while serum IgG was decreased in cluster 1. Using α-diversity analysis, we found a microbiome with lower richness and diversity in cluster 1. Some gut bacteria, including Succinivibrio and several members of the Prevotellaceae family, were enriched in cluster 1, while Christensenellaceae R-7 group, Romboutsia, and Clostridium sensu stricto 1 were enriched in cluster 2. A co-occurrence network analysis revealed that the differential interaction patterns existed in two enterotypes, and microbial function prediction suggested that some nutrient metabolism-related pathways, including amino acid biosynthesis and starch and sucrose metabolism, were enriched in cluster 1. Furthermore, a correlation analysis showed that enterotype-related bacteria were closely correlated with gut fermentation, serum biochemistry, and growth rate. Overall, our data provide a new perspective for understanding enterotype characteristics in goats, offering insights into important microbial interaction mechanisms for improving the growth performance of ruminant animals. IMPORTANCE The intricate relationships between a host animal and its resident gut microbiomes provide opportunities for dealing with energy efficiency and production challenges in the livestock industry. Here, we applied the enterotype concept to the gut microbiome in young goats and found that it can be classified into two enterotypes which are apparently associated with divergences in gut fermentation, blood biochemistry, and goat growth rates. The microbial co-occurrence networks and function predictions differed between the two enterotypes, suggesting that the formation of host phenotype may be modified by different bacterial features and complex bacterial interactions. The characteristics of enterotypes related to growth performance in young goats may enable us to improve long-term production performance in goat industry by modulating the gut microbiome during early life.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Cabras , Fermentação , Bactérias/genética , Colesterol
20.
Water Res ; 234: 119816, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878152

RESUMO

The massive use of zinc pyrithione (ZPT, as broad-spectrum bactericides) resulted in its high levels in waste activated sludge (WAS) and affected subsequent WAS treatment. This work revealed the effects of ZPT on the volatile fatty acids (VFAs) during WAS anaerobic digestion, in which VFAs yield was enhanced by approximately 6-9 folds (from 353 mg COD/L in control to 2526-3318 mg COD/L with low level of ZPT (20-50 mg/g TSS)). The ZPT occurred in WAS enabled the acceleration of solubilization, hydrolysis and acidification processes while inhibited the methanogenesis. Also, the low ZPT contributed to the enrichment of functional hydrolytic-acidifying microorganisms (e.g., Ottowia and Acinetobacter) but caused the reduction of methanogens (e.g., Methanomassiliicoccus and Methanothrix). Meta-transcriptomic analysis demonstrated that the critical genes relevant to extracellular hydrolysis (i.e. CLPP and ZapA), membrane transport (i.e. gltI, and gltL), substrates metabolisms (i.e. fadj, and acd), and VFAs biosynthesis (i.e. porB and porD) were all upregulated by 25.1-701.3% with low level of ZPT. Specifically, the ZPT stimulus on amino acids metabolism for VFAs transformation was prominent over carbohydrates. Moreover, the functional species enabled to regulate the genes in QS and TCS systems to maintain favorable cell chemotaxis to adapt the ZPT stress. The cationic antimicrobial peptide resistance pathway was upregulated to blunt ZPT with the secretion of more lipopolysaccharide and activate proton pumps to maintain ions homeostasis to antagonize the ZPT toxicity for high microbial activities, the abundance of related genes was up-regulated by 60.5 to 524.5%. This work enlightened environmental behaviors of emerging pollutants on WAS anaerobic digestion process with interrelations of microbial metabolic regulation and adaptive responses.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Esgotos/química , Fermentação , Anaerobiose , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA