Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 127: 530-541, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35798244

RESUMO

Aeromonas hydrophila is a Gram-negative bacterial pathogen with a broad host range, including fish and humans. In this study, we examined the function of a secretory serine protease (named Ssp1) identified in pathogenic A. hydrophila CCL1. Ssp1 possesses a trypsin-like serine protease domain and contains two conserved PDZ domains. Recombinant Ssp1 protein (rSsp1) treatment increased intestinal permeability by downregulating and redistributing tight junction protein Occludin in intestinal Caco-2 cells in vitro. Western blot demonstrated that rSsp1 treatment in Caco-2 cells resulted in marked increases in the expressions of myosin light chain kinase (MLCK) and phosphorylated myosin light chain (p-MLC). For virulence analysis, an isogenic CCL1 mutant ΔSsp1 was created. ΔSsp1 bears an in-frame deletion of the Ssp1 gene. A live infection study in crucian carps showed that, compared to CCL1, ΔSsp1 infection exhibited increased Occludin expression, reduced intestinal permeability and tissue dissemination capacity, and attenuated overall virulence in vivo. However, ΔSsp1 showed no differences in the biofilm formation, swimming motility, and resistance to environmental stress. These lost virulence capacities of ΔSsp1 were restored by complementation with the Ssp1 gene. Global transcriptome analysis and quantitative real-time RT-PCR showed that compared to CCL1 infection, ΔSsp1 promoted the expressions of antimicrobial molecules (MUC2, LEAP-2, Hepcidin-1, and IL-22). Finally, CCL1 infection caused significant dysbiosis of the gut microbiota, including increased Vibrio and Deefgea compared to ΔSsp1 infected fish. Taken together, these results indicate that Ssp1 is essential for the virulence of A. hydrophila and is required for the perturbation of intestinal tight junction barrier.


Assuntos
Aeromonas hydrophila , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Animais , Células CACO-2 , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Mucosa Intestinal/metabolismo , Ocludina/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Junções Íntimas/metabolismo
2.
Fish Shellfish Immunol ; 124: 1-11, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378306

RESUMO

Ladderlectin is a pattern recognition receptor (PRR) in fish that is critical for rapid detection of bacteria in vitro, but the immunological function of ladderlectin in vivo is essentially unknown. In this study, we examined the expression and function of a ladderlectin homologue (WR-ladderlectin) from hybrid crucian carp. WR-ladderlectin contains 157 amino acids and possesses the conserved C-type lectin domain. WR-ladderlectin is mainly expressed in the intestine and is upregulated by bacterial infection. Recombinant WR-ladderlectin (rWR-ladderlectin) agglutinated Aeromonas hydrophila and Escherichia coli. rWR-ladderlectin also bound the A. hydrophila and E. coli in a protein dose-dependent manner. As well as its ability to bind bacterial cells, rWR-ladderlectin displayed apparent bactericidal activity against A. hydrophila and E. coli in vitro. When introduced in vivo, rWR-ladderlectin induced significant expression of the antimicrobial molecules and tight junctions in the intestine. In addition, rWR-ladderlectin prevented significant decrease in the length of intestine villus and enhanced the host's resistance to bacterial infection. These results indicate that WR-ladderlectin is a classic pattern recognition molecule that protects intestinal mucosal barrier against bacterial infection.


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Animais , Carpas/metabolismo , Escherichia coli , Proteínas de Peixes , Imunidade Inata
3.
Fish Shellfish Immunol ; 122: 29-37, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35085736

RESUMO

Glucagon-like peptide 2 (GLP2) is a proglucagon-derived peptide produced by intestinal enteroendocrine L-cells. The main biological actions of GLP2 in mammals are related to regulating energy absorption and maintaining the morphology, integrity of intestinal mucosa. However, the in vivo function of fish GLP2 in intestinal barrier and immune defense is essentially unknown. With an aim to elucidate the antimicrobial mechanism of GLP2 in fish, we in this study examined the function of GLP2 from hybrid crucian carp. Hybrid crucian carp GLP2 (WR-GLP2) possesses the conserved glucagon like hormones 2 domain. WR-GLP2 is mainly expressed in the intestine and is significantly upregulated after Aeromonas hydrophila infection. AB-PAS staining analysis showed WR-GLP2 significantly increased the number of goblet cells in intestine. WR-GLP2 induced significant inductions in the expression of the antimicrobial molecules (MUC2, Lyzl-1, Hepcidin-1 and LEAP-2) and tight junctions (ZO-1, Occludin and Claudin-4). In addition, WR-GLP2 significantly alleviated the intestinal apoptosis, thereby enhancing host's resistance against Aeromonas hydrophila infection. Together these results indicate that WR-GLP2 is involved in intestinal mucosal barrier and immune defense against pathogen infection.


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Animais , Carpas/genética , Carpas/metabolismo , Proteínas de Peixes , Peptídeo 2 Semelhante ao Glucagon , Infecções por Bactérias Gram-Negativas/veterinária , Mucosa Intestinal/metabolismo , Mamíferos/metabolismo
4.
Dev Comp Immunol ; 149: 105055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37690613

RESUMO

The pentraxin family is an evolutionarily conserved group that plays an important role in innate immunity. C-reactive protein (CRP) and serum amyloid P component (SAP) are classical members of the short pentraxins and are known to be the major acute phase proteins. In this work, we have cloned a novel pentraxin fusion protein, WR-PTXF, from Carassius cuvieri × Carassius auratus red var. In fish, the biological function of PTXF is essentially unknown. For this purpose, we report the identification and analysis of WR-PTXF and elucidate its role in the antibacterial innate immunity. WR-PTXF contains 224 amino acids and shares 79.8% and 23.0% sequence identities with crucian carp CRP and SAP, respectively. Blast analysis shows that WR-PTXF and goldfish PTXF had the highest similarity (97.3%). WR-PTXF is expressed in multiple tissues and is upregulated by Aeromonas hydrophila infection. WR-PTXF contains a short pentraxin domain and recombinant WR-PTXF protein (rWR-PTXF) can bind the A. hydrophila in a concentration-dependent manner. Further, rWR-PTXF displays apparent bacteriostatic activity against A. hydrophila in vitro by enhancing the uptake of the bound bacteria by host phagocytes. When introduced in vivo, rWR-PTXF not only protects the gut mucosa but also limits the colonization of A. hydrophila in systemic immune organs. Consistently, knockdown of WR-PTXF significantly promotes bacterial dissemination in the tissues of host. These results indicate that WR-PTXF is a classic pattern recognition molecule that exerts a protective effect against bacterial infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA