Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2309852121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306476

RESUMO

Metal-organic frameworks (MOFs) are superior ion adsorbents for selectively capturing toxic ions from water. Nevertheless, they have rarely been reported to have lithium selectivity over divalent cations due to the well-known flexibility of MOF framework and the similar physiochemical properties of Li+ and Mg2+. Herein, we report an ion-sieving adsorption approach to design sunlight-regenerable lithium adsorbents by subnanoporous MOFs for efficient lithium extraction. By integrating the ion-sieving agent of MOFs with light-responsive adsorption sites of polyspiropyran (PSP), the ion-sieving adsorption behaviors of PSP-MOFs with 6.0, 8.5, and 10.0 Å windows are inversely proportional to their pore size. The synthesized PSP-UiO-66 with a narrowest window size of 6.0 Å shows high LiCl adsorption capacity up to 10.17 mmol g-1 and good Li+/Mg2+ selectivity of 5.8 to 29 in synthetic brines with Mg/Li ratio of 1 to 0.1. It could be quickly regenerated by sunlight irradiation in 6 min with excellent cycling performance of 99% after five cycles. This work sheds light on designing selective adsorbents using responsive subnanoporous materials for environmentally friendly and energy-efficient ion separation and purification.

2.
Environ Sci Technol ; 57(17): 7051-7062, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37074844

RESUMO

The presence of organic micropollutants in water sources worldwide has created a need for the development of effective and selective oxidation methods in complex water matrices. This study is the first report of the combination of ferrate(VI) (Fe(VI)) and periodate (PI) for synergistic, rapid, and selective elimination of multiple micropollutants. This combined system was found to outperform other Fe(VI)/oxidant systems (e.g., H2O2, peroxydisulfate, and peroxymonosulfate) in rapid water decontamination. Scavenging, probing, and electron spin resonance experiments showed that high-valent Fe(IV)/Fe(V) intermediates, rather than hydroxyl radicals, superoxide radicals, singlet oxygen, and iodyl radicals, played a dominant role in the process. Further, the generation of Fe(IV)/Fe(V) was evidenced directly by the 57Fe Mössbauer spectroscopic test. Surprisingly, the reactivity of PI toward Fe(VI) is rather low (0.8223 M-1 s-1) at pH 8.0, implying that PI was not acting as an activator. Besides, as the only iodine sink of PI, iodate also played an enhanced role in micropollutant abatement by Fe(VI) oxidation. Further experiments proved that PI and/or iodate might function as the Fe(IV)/Fe(V) ligands, causing the utilization efficiency of Fe(IV)/Fe(V) intermediates for pollutant oxidation to outcompete their auto-decomposition. Finally, the oxidized products and plausible transformation pathways of three different micropollutants by single Fe(VI) and Fe(VI)/PI oxidation were characterized and elucidated. Overall, this study proposed a novel selective oxidation strategy (i.e., Fe(VI)/PI system) that could efficiently eliminate water micropollutants and clarified the unexpected interactions between PI/iodate and Fe(VI) for accelerated oxidation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Iodatos , Peróxido de Hidrogênio , Oxirredução , Água , Poluentes Químicos da Água/análise , Purificação da Água/métodos
3.
J Phys Chem A ; 127(10): 2314-2321, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36862970

RESUMO

The occurrence of micropollutants in water threatens public health and ecology. Removal of micropollutants such as pharmaceuticals by a green oxidant, ferrate(VI) (FeVIO42-, Fe(VI)) can be accomplished. However, electron-deficient pharmaceuticals, such as carbamazepine (CBZ) showed a low removal rate by Fe(VI). This work investigates the activation of Fe(VI) by adding nine amino acids (AA) of different functionalities to accelerate the removal of CBZ in water under mild alkaline conditions. Among the studied amino acids, proline, a cyclic AA, had the highest removal of CBZ. The accelerated effect of proline was ascribed by demonstrating the involvement of highly reactive intermediate Fe(V) species, generated by one-electron transfer by the reaction of Fe(VI) with proline (i.e., Fe(VI) + proline → Fe(V) + proline•). The degradation kinetics of CBZ by a Fe(VI)-proline system was interpreted by kinetic modeling of the reactions involved that estimated the rate of the reaction of Fe(V) with CBZ as (1.03 ± 0.21) × 106 M-1 s-1, which was several orders of magnitude greater than that of Fe(VI) of 2.25 M-1 s-1. Overall, natural compounds such as amino acids may be applied to increase the removal efficiency of recalcitrant micropollutants by Fe(VI).


Assuntos
Aminoácidos , Poluentes Químicos da Água , Prolina , Poluentes Químicos da Água/química , Oxirredução , Cinética , Preparações Farmacêuticas
4.
J Environ Sci (China) ; 125: 148-159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375901

RESUMO

Urban villages are unique residential neighborhoods in urban areas in China. Roof tanks are their main form of water supply, and water quality deterioration might occur in this system because of poor hygienic conditions and maintenance. In this study, water samples were seasonally collected from an urban village to investigate the influence of roof tanks as an additional water storage device on the variation in the microbial community structure and pathogenic gene markers. Water stagnation in the roof tank induced significant decreases in chlorine (p < 0.05), residual chlorine was as low as 0.02 mg/L in spring. Propidium monoazide (PMA)-qPCR revealed a one-magnitude higher level of total viable bacterial concentration in roof tank water samples (2.14 ± 1.81 × 105 gene copies/mL) than that in input water samples (3.57 ± 2.90 × 104 gene copies/mL, p < 0.05), especially in spring and summer. In addition, pathogenic fungi, Mycobacterium spp., and Legionella spp. were frequently detected in the roof tanks. Terminal users might be exposed to higher microbial risk induced by high abundance of Legionella gene marker. Spearman's rank correlation and redundancy analysis showed that residual chlorine was the driving force that promoted bacterial colonization and shaped the microbial community. It is worth noted that the sediment in the pipe will be agitated when the water supply is restored after the water outages, which can trigger an increase in turbidity and bacterial biomass. Overall, the findings provide practical suggestions for controlling microbiological health risks in roof tanks in urban villages.


Assuntos
Cloro , Microbiologia da Água , Abastecimento de Água , Bactérias/genética , Reação em Cadeia da Polimerase em Tempo Real , Qualidade da Água
5.
Environ Sci Technol ; 56(1): 30-47, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918915

RESUMO

Efforts are being made to tune the reactivity of the tetraoxy anion of iron in the +6 oxidation state (FeVIO42-), commonly called ferrate, to further enhance its applications in various environmental fields. This review critically examines the strategies to generate highly reactive high-valent iron intermediates, FeVO43- (FeV) and FeIVO44- or FeIVO32- (FeIV) species, from FeVIO42-, for the treatment of polluted water with greater efficiency. Approaches to produce FeV and FeIV species from FeVIO42- include additions of acid (e.g., HCl), metal ions (e.g., Fe(III)), and reductants (R). Details on applying various inorganic reductants (R) to generate FeV and FeIV from FeVIO42- via initial single electron-transfer (SET) and oxygen-atom transfer (OAT) to oxidize recalcitrant pollutants are presented. The common constituents of urine (e.g., carbonate, ammonia, and creatinine) and different solids (e.g., silica and hydrochar) were found to accelerate the oxidation of pharmaceuticals by FeVIO42-, with potential mechanisms provided. The challenges of providing direct evidence of the formation of FeV/FeIV species are discussed. Kinetic modeling and density functional theory (DFT) calculations provide opportunities to distinguish between the two intermediates (i.e., FeIV and FeV) in order to enhance oxidation reactions utilizing FeVIO42-. Further mechanistic elucidation of activated ferrate systems is vital to achieve high efficiency in oxidizing emerging pollutants in various aqueous streams.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Compostos Férricos , Ferro , Oxirredução , Água , Poluentes Químicos da Água/análise
6.
J Environ Manage ; 323: 116241, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36137453

RESUMO

With the ever-increasing severity of the ongoing water crisis, it is of great significance to develop efficient, eco-friendly water treatment technologies. As an emerging oxidant in the advanced oxidation processes (AOPs), periodate (PI) has received worldwide attention owing to the advantages of superior stability, susceptible activation capability, and high efficiency for decontamination. This is the first review that conducts a comprehensive analysis of the mechanism, pollutant transformation pathway, toxicity evolution, barriers, and future directions of PI-based AOPs based on the scientific information and experimental data reported in recent years. The pollutant elimination in PI-based AOPs was mainly attributed to the in situ generate reactive oxygen species (e.g., •OH, O(3P), 1O2, and O2•-), reactive iodine species (e.g., IO3• and IO4•), and high-valent metal-oxo species with exceptionally high reactivity. These reactive species were derived from the PI activated by the external energy, metal activators, alkaline, freezing, hydroxylamine, H2O2, etc. It is noteworthy that direct electron transport could also dominate the decontamination in carbon-based catalyst/PI systems. Furthermore, PI was transformed to iodate (IO3-) stoichiometrically via an oxygen-atom transfer process in most PI-based AOPs systems. However, the production of I2, I-, and HOI was sometimes inevitable. Furthermore, the transformation pathway of typical micropollutants was clarified, and the in silico QSAR-based prediction results indicated that most transformation products retained biodegradation recalcitrance and multi-endpoint toxicity. The barriers faced by the PI-based AOPs were also clarified with potential solutions. Finally, future perspectives and research directions are highlighted based on the current state of PI-based AOPs. This review enhances our in-depth understanding of PI-based AOPs for pollutant elimination and identifies future research needs to focus on the reduction of toxic byproducts.


Assuntos
Poluentes Ambientais , Iodo , Poluentes Químicos da Água , Purificação da Água , Carbono , Descontaminação , Hidroxilaminas , Iodatos , Oxidantes , Oxirredução , Oxigênio , Ácido Periódico , Espécies Reativas de Oxigênio , Purificação da Água/métodos
7.
J Environ Sci (China) ; 117: 37-45, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35725087

RESUMO

Water quality deterioration often occurs in secondary water supply systems (SWSSs), and increased heavy metal concentrations can be a serious problem. In this survey, twelve residential neighborhoods were selected to investigate the influence of SWSSs on the seasonal changes in heavy metal concentrations from input water to tank and tap water. The concentrations of nine evaluated heavy metals in all groups of water samples were found to be far below the specified standard levels in China. The concentrations of Fe, Mn, and Zn increased significantly from the input water samples to the tank and tap water samples in spring and summer (p < 0.05), especially for the water samples that had been stagnant for a long time. Negative correlations were found between most of the heavy metals and residual chlorine (Fe, Cu, Zn, and As, r = -0.186 to -0.519, p < 0.05). In particular, a high negative correlation was observed between Fe and residual chlorine (r = -0.489 to -0.519, p < 0.01) in spring and summer. Fe and Mn displayed positive correlations with turbidity (r = 0.672 and 0.328, respectively; p < 0.05). In addition, Cr and As were found to be positively associated with some nutrients (NO3-, TN, and SO42-; r = 0.420-0.786, p < 0.01). The material of the storage tanks had little influence on the difference in heavy metal concentrations. Overall, this survey illustrated that SWSSs may pose a chronic threat to water quality and could provide useful information for practitioners.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cloro , Monitoramento Ambiental , Metais Pesados/análise , Poluentes Químicos da Água/análise , Abastecimento de Água
8.
Environ Sci Technol ; 55(1): 623-633, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33326216

RESUMO

This paper investigated the oxidation of recalcitrant micropollutants [i.e., atenolol (ATL), flumequine, aspartame, and diatrizoic acid] by combining ferrate(VI) (FeVIO42-, FeVI) with a series of metal ions [i.e., Fe(III), Ca(II), Al(III), Sc(III), Co(II), and Ni(II)]. An addition of Fe(III) to FeVI enhanced the oxidation of micropollutants compared solely to FeVI. The enhanced oxidation of studied micropollutants increased with increasing [Fe(III)]/[FeVI] to 2.0. The complete conversion of phenyl methyl sulfoxide (PMSO), as a probe agent, to phenyl methyl sulfone (PMSO2) by the FeVI-Fe(III) system suggested that the highly reactive intermediate FeIV/FeV species causes the increased oxidation of all four micropollutants. A kinetic modeling of the oxidation of ATL demonstrated that the major species causing the increase in ATL removal was FeIV, which had an estimated rate constant as (6.3 ± 0.2) × 104 M-1 s-1, much higher than that of FeVI [(5.0 ± 0.4) × 10-1 M-1 s-1]. Mechanisms of the formed oxidation products of ATL by FeIV, which included aromatic and/or benzylic oxidation, are delineated. The presence of natural organic matter significantly inhibited the removal of four pollutants by the FeVI-Fe(III) system. The enhanced effect of the FeVI-Fe(III) system was also seen in the oxidation of the micropollutants in river water and lake water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Compostos Férricos , Íons , Ferro , Cinética , Oxirredução
9.
Environ Sci Technol ; 55(13): 9150-9160, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34128639

RESUMO

This paper presents an advanced oxidation process (AOP) of peracetic acid (PAA) and ruthenium(III) (Ru(III)) to oxidize micropollutants in water. Studies of PAA-Ru(III) oxidation of sulfamethoxazole (SMX), a sulfonamide antibiotic, in 0.5-20.0 mM phosphate solution at different pH values (5.0-9.0) showed an optimum pH of 7.0 with a complete transformation of SMX in 2.0 min. At pH 7.0, other metal ions (i.e., Fe(II), Fe(III), Mn(II), Mn(III), Co(II), Cu(II), and Ni(II)) in 10 mM phosphate could activate PAA to oxidize SMX only up to 20%. The PAA-Ru(III) oxidation process was also unaffected by the presence of chloride and carbonate ions in solution. Electron paramagnetic resonance (EPR) measurements and quenching experiments showed the dominant involvement of the acetyl(per)oxyl radicals (i.e., CH3C(O)O• and CH3C(O)OO•) for degrading SMX in the PAA-Ru(III) oxidation process. The transformation pathways of SMX by PAA-Ru(III) were proposed based on the identified intermediates. Tests with other pharmaceuticals demonstrated that the PAA-Ru(III) oxidation system could remove efficiently a wide range of pharmaceuticals (9 compounds) in the presence of phosphate ions in 2.0 min at neutral pH. The knowledge gained herein on the effective role of Ru(III) to activate PAA to oxidize micropollutants may aid in developing Ru(III)-containing catalysts for PAA-based AOPs.


Assuntos
Rutênio , Poluentes Químicos da Água , Compostos Férricos , Peróxido de Hidrogênio , Oxirredução , Ácido Peracético , Água
10.
Environ Sci Technol ; 55(3): 1710-1720, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33426890

RESUMO

Elucidating the interactions between metal ions and dissolved organic matter and deciphering mechanisms for their mineralization in the aquatic environment are central to understanding the speciation, transport, and toxicity of nanoparticles (NPs). Herein, we examine the interactions between Ag+ and Au3+ ions in mixed solutions (χAg = 0.2, 0.5, and 0.8) in the presence of humic acids (HAs) under simulated sunlight; these conditions result in the formation of bimetallic Ag-Au NPs. A key distinction is that the obtained alloy NPs are compositionally and morphologically rather different from NPs obtained from thermally activated dark processes. Photoillumination triggers a distinctive plasmon-mediated process for HA-assisted reductive mineralization of ions to bimetallic alloy NPs which is not observed in its dark thermal reduction counterpart. The initial nucleation of bimetallic NPs is dominated by differences in the cohesive energies of Ag and Au crystal lattices, whereas the growth mechanisms are governed by the strongly preferred incorporation of Ag ions, which stems from their greater photoreactivity. The bimetallic NPs crystallize in shapes governed by the countervailing influence of minimizing free energy through the adoption of Wulff constructions and the energetic penalties associated with twin faults. As such, assessments of the stability and the potential toxic effects of bimetallic NPs arising from their possible existence in aquatic environments will depend sensitively on the origins of their formation.


Assuntos
Nanopartículas Metálicas , Prata , Ligas , Ouro , Luz Solar
11.
J Water Health ; 19(6): 907-917, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34874899

RESUMO

Nowadays, cyanobacteria blooms and microcystins (MCs) pollution are threatening water safety and public health. In this study, a rapid detection method was established for detecting MCs producing cyanobacteria. The MC synthesis gene mcyG was measured through recombinase polymerase amplification combined with lateral flow strips (LF-RPA) technology. The target gene mcyG was amplified at a temperature range of 37-45 °C, and the amplification time to detect mcyG was only 15 min at 37 °C. The optimal reaction conditions were confirmed using single dependent variable experiments, suggesting that the best probe dosage for 50 µL of the reaction mixture was 0.2 µL, the best dilution ratio of products was 1/100, and the best loading volume was 10 µL. The specificity test proved that the LF-RPA assay could distinguish MCs producing cyanobacteria from nontoxic algae well. Within 35 min of amplification time, the detection limit of the LF-RPA assay was 103 copies/mL mcyG and 104 cells/mL Microcystis aeruginosa FACHB-905. Overall, the LF-RPA assay could detect MCs producing cyanobacteria in water samples quickly and accurately, and it has a great promise to be applied for monitoring the MCs producing cyanobacteria blooms in natural waters.


Assuntos
Cianobactérias , Recombinases , Cianobactérias/genética , Microcistinas , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade , Água
12.
Environ Sci Technol ; 53(9): 5272-5281, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30933490

RESUMO

Destruction of pharmaceuticals excreted in urine can be an efficient approach to eliminate these environmental pollutants. However, urine contains high concentrations of chloride, ammonium, and bicarbonate, which may hinder treatment processes. This study evaluated the application of ferrate(VI) (FeVIO42-, Fe(VI)) to oxidize pharmaceuticals (carbamazepine (CBZ), naproxen (NAP), trimethoprim (TMP), and sulfonamide antibiotics (SAs)) in synthetic hydrolyzed human urine and uncovered new effects from urine's major inorganic constituents. Chloride slightly decreased pharmaceuticals' removal rate by Fe(VI) due to the ionic strength effect. Ammonium (0.5 M) in undiluted hydrolyzed urine posed a strong scavenging effect, but lower concentrations (≤0.25 M) of ammonium enhanced the pharmaceuticals' degradation by 300 µM Fe(VI), likely due to the reactive ammonium complex form of Fe(V)/Fe(IV). For the first time, bicarbonate was found to significantly promote the oxidation of aniline-containing SAs by Fe(VI) and alter the reaction stoichiometry of Fe(VI) and SA from 4:1 to 3:1. In depth investigation indicated that bicarbonate not only changed the Fe(VI)/SA complexation ratio from 1:2 to 1:1 but provided a stabilizing effect for Fe(V) intermediate formed in situ, enabling its degradation of SAs. Overall, the results of this study suggested that Fe(VI) is a promising oxidant for the removal of pharmaceuticals in hydrolyzed urine.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Ferro , Cinética , Oxidantes , Oxirredução
13.
Environ Sci Technol ; 53(5): 2695-2704, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30715861

RESUMO

This work presents ferrate(VI) (FeVIO42-, FeVI) oxidation of a wide range of sulfonamide antibiotics (SAs) containing five- and six-membered heterocyclic moieties ( R) in their molecular structures. Kinetics measurements of the reactions between FeVI and SAs at different pH (6.5-10.0) give species-specific second-order rate constants, k5 and k6 of the reactions of protonated FeVI (HFeO4-) and unprotonated FeVI (FeVIO42-) with protonated SAs (HX), respectively. The values of k5 varied from (1.2 ± 0.1) × 103 to (2.2 ± 0.2) × 104 M-1 s-1, while the range of k6 was from (1.1 ± 0.1) × 102 to (1.0 ± 0.1) × 103 M-1 s-1 for different SAs. The transformation products of reaction between FeVI and sulfadiazine (SDZ, contains a six-membered R) include SO2 extrusion oxidized products (OPs) and aniline hydroxylated products. Comparatively, oxidation of sulfisoxazole (SIZ, a five-membered R) by FeVI has OPs that have no SO2 extrusion in their structures. Density functional theory calculations are performed to demonstrate SO2 extrusion in oxidation of SDZ by FeVI. The detailed mechanisms of oxidation are proposed to describe the differences in the oxidation of six- and five-membered heterocyclic moieties ( R) containing SAs (i.e., SDZ versus SIZ) by FeVI.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Ferro , Cinética , Oxirredução , Sulfonamidas
14.
J Environ Manage ; 232: 964-977, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33395765

RESUMO

In recent years, many research groups started to study the combination of metal-organic frameworks (MOFs) with nanocarbon materials, which showed the excellent improved performances than MOFs alone. The addition of carbon materials such as graphene oxides (GOs) and carbon nanotubes (CNTs) into MOFs can improve the physico-chemical properties of parent MOFs with excellent chemical robustness, high mechanical and distinguished electronic thermal robustness. These advantages facilitate the wider applications of MOFs/carbon materials (MOFs-C) in more research fields. This paper is devoted to reviewing the recent studies about the preparation and applications of MOFs-C in environmental remediation. This paper discusses the efficient adsorptive removal of a wide range of pollutants by MOFs-C, including organic contaminants and heavy metals from water as well as VOCs and some other toxic gases from atmospheric environment. Additionally, the catalytic performance of these nanocomposites for photocatalysis and Fenton-like oxidation of water pollutants is discussed in details. Meanwhile, the significant roles of nanocarbons and in-depth mechanisms for improved adsorption or catalysis are summarized. Finally, future perspectives on the development and application of MOFs-C composites for pollution remediation are presented at the end of this paper.

15.
Environ Sci Technol ; 52(19): 11319-11327, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30187746

RESUMO

This paper presents an accelerated ferrate(VI) (FeVIO42-, FeVI) oxidation of contaminants in 30 s by adding one-electron and two-electron transfer reductants (R(1) and R(2)). An addition of R(2) (e.g., NH2OH, AsIII, SeIV, PIII, and NO2-, and S2O32-) results in FeIV initially, while FeV is generated with the addition of R(1) (e.g., SO32-). R(2) additives, except S2O32-, show the enhanced oxidation of 20-40% of target contaminant, trimethoprim (TMP). Comparatively, enhanced oxidation of TMP was up to 100% with the addition of R(1) to FeVI. Interestingly, addition of S2O32- (i.e., R(2)) also achieves the enhanced oxidation to 100%. Removal efficiency of TMP depends on the molar ratio ([R(1)]:[FeVI] or [R(2)]:[FeVI]). Most of the reductants have the highest removal at molar ratio of ∼0.125. A FeVI-S2O32- system also oxidizes rapidly a wide range of organic contaminants (pharmaceuticals, pesticides, artificial sweetener, and X-ray contrast media) in water and real water matrices. FeV and FeIV as the oxidative species in the FeVI-S2O32--contaminant system are elucidated by determining removal of contaminants in oxygenated and deoxygenated water, applying probing agent, and identifying oxidized products of TMP and sulfadimethoxine (SDM) by FeVI-S2O32- systems. Significantly, elimination of SO2 from sulfonamide (i.e., SDM) is observed for the first time.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ferro , Cinética , Oxirredução , Trimetoprima
16.
Environ Sci Technol ; 52(13): 7269-7278, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29864275

RESUMO

Gold and silver nanoparticles can be stabilized endogenously within aquatic environments from dissolved ionic species as a result of mineralization induced by dissolved organic matter. However, the ability of fulvic and humic acids to stabilize bimetallic nanoparticles is entirely unexplored. Elucidating the formation of such particles is imperative given their potential ecological toxicity. Herein, we demonstrate the nucleation, growth, and stabilization of bimetallic Ag-Au nanocrystals from the interactions of Ag+ and Au3+ with Suwannee River fulvic and humic acids. The mechanisms underpinning the stabilization of Ag-Au alloy NPs at different pH (6.0-9.0) values are studied by UV-vis spectrophotometry, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). Complexation of free Ag+ and Au3+ ions with the Lewis basic groups (carbonyls, carboxyls, and thiols) of FA and HA, followed by electron-transfer from redox-active moieties present in dissolved organic matter initiates the nucleation of the NPs. Alloy formation and interdiffusion of Au and Ag atoms are further facilitated by a galvanic replacement reaction between AuCl4- and Ag. Charge-transfer from Au to Ag stabilizes the formed bimetallic NPs. A more pronounced agglomeration of the Ag-Au NPs is observed when HA is used compared to FA as the reducing agent. The bimetallic NPs are stable for greater than four months, which suggests the possible persistence and dispersion of these materials in aquatic environments. The mechanistic ideas have broad generalizability to reductive mineralization processes mediated by dissolved organic matter.


Assuntos
Nanopartículas Metálicas , Prata , Ligas , Ouro , Microscopia Eletrônica de Transmissão
17.
Environ Sci Technol ; 50(15): 8128-34, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27380414

RESUMO

Eighteen polyfluorinated dibenzo-p-dioxins (PFDDs) were synthesized by pyrolysis of fluorophenols. Using a 500 W Xe lamp as the light source, the PFDDs photodegradation kinetics in n-hexane were investigated. The photolysis reactions obeyed the pseudo-first-order rate equation, and higher fluorinated PFDDs tended to photolyze more slowly. Theoretically calculated parameters reflecting the molecular structural properties were used to develop a new model of PFDDs photolysis rates. The results indicated that the substitution pattern for fluorine atoms and the C-O bond length were major factors in the photolysis of PFDDs. We selected octafluorinated dibenzo-p-dioxin (OFDD) as a representative PFDDs to explore the influence of solvent on the photolysis rate of PFDDs, and the results indicated that neither the polarity nor donor hydrogen of organic solvents are independent influencing factors. Mechanistic pathways for the photolysis of OFDD in n-hexane were first studied. The results indicated that photodegradation of OFDD produces octafluorinated dihydroxybiphenyls, octafluorinated phenoxyphenols, and fluorinated phenols. The major pathway for photodegradation of OFDD was C-O bond cleavage. Defluorination reactions did not occur during the photolysis process.


Assuntos
Fotólise , Solventes/química , Cinética , Modelos Teóricos , Fenóis/química
18.
Ecotoxicol Environ Saf ; 125: 61-71, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26655435

RESUMO

With the increasing applications of carbon nanotubes (CNTs) worldwide, considerable concerns have been raised regarding their inevitable releases into natural waters and ecotoxicity. It was supposed that CNTs may interact with some existing pollutants like zinc in aquatic systems and exhibit different effects when compared with their single treatments. However, data on their possible combined toxicity on aquatic species are still lacking. Moreover, the interactions of Zn with different functionalized CNTs may be distinct and thereby lead to diverse results. It is like that functional groups play a vital role in illustrating the differences in toxicity among various CNTs. In this study, the single and joint effects of multi-walled carbon nanotubes (MWCNTs) and two MWCNTs functionalized with carboxylation (COOH-MWCNTs) or hydroxylation (OH-MWCNTs) in the absence or presence of zinc (Zn) on antioxidant status and histopathological changes in Carassius auratus were evaluated. Synergistic effect was tentatively proposed for joint-toxicity action, which was supported by apparently observed oxidative stress and histopathological changes in joint exposure groups. The integrated biomarker response index was calculated to rank the toxicity order, from which the conclusion of synergistic effect was strengthened. Regarding differences among various CNTs, our data showed that OH-MWCNTs and COOH-MWCNTs were more stressful to fish than raw MWCNTs. This finding sustained that functionalization is an important factor in nanotoxicity, which may serve as clues for future design and application of CNTs. Overall, these results provided some valuable toxicological data on the joint effects of CNTs and heavy metals on aquatic species, which can facilitate further understanding on the potential impacts of other coexisting pollutants in the culture of freshwater fish.


Assuntos
Antioxidantes/metabolismo , Carpa Dourada/fisiologia , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/fisiologia , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Animais , Biomarcadores/metabolismo , Fígado/metabolismo , Metais Pesados/farmacologia , Nanotubos de Carbono/química , Estresse Oxidativo/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-26606036

RESUMO

In this study, five different congeners of polyfluorinated dibenzo-P-dioxins (PFDDs) (1,8-di-FDD, 1,3,8-tri-FDD, 1,3,6,8-tetra-FDD, 2,3,7,8-tetra-FDD and 1,2,3,4,5,6,7,8-octa-FDD), representing different numbers and positions of fluorine substituents of all 75 PFDD congeners, were synthesized and purified to evaluate their potential environmental impact on living organisms. Their toxicity was evaluated by determining the impact on the organo-somatic indices (OSI) and ethoxyresorufin-O-deethylase (EROD) activity in mice (Mus musculus) after intragastric administration with different doses (0.5-100 µg/kg body weight) for 3 days. The results showed that these PFDDs significantly inhibited the growth and changed the OSI in mouse tissues. Notably, hepatic EROD activity was markedly induced in mice after exposure to these PFDDs, probably indicating a high affinity of binding to the aryl hydrocarbon receptor. Overall, these findings provided some preliminary but alarming toxicity data of PFDDs, and filled information gaps in the toxicological databases for living organisms.

20.
Environ Sci Technol ; 49(7): 4209-17, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25751737

RESUMO

This study found that decabromodiphenyl ether (BDE 209) could be oxidized effectively by potassium permanganate (KMnO4) in sulfuric acid medium. A total of 15 intermediate oxidative products were detected. The reaction pathways were proposed, which primarily included cleavage of the ether bond to form pentabromophenol. Direct oxidation on the benzene ring also played an important role because hydroxylated polybrominated diphenyl ethers (PBDEs) were produced during the oxidation process. The degradation occurred dramatically in the first few minutes and fitted pseudo-first-order kinetics. Increasing the water content decelerated the reaction rate, whereas increasing the temperature facilitated the reaction. In addition, density functional theory (DFT) was employed to determine the frontier molecular orbital (FMO) and frontier electron density (FED) of BDE 209 and the oxidative products. The theoretical calculation results confirmed the proposed reaction pathways.


Assuntos
Poluentes Ambientais/química , Éteres Difenil Halogenados/química , Permanganato de Potássio/química , Hidroxilação , Cinética , Modelos Químicos , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA