RESUMO
In recent years, the peracetic acid (PAA)-based advanced oxidation process (AOPs) has garnered significant attention in the field of water treatment due to rapid response time and environmentally-friendliness. The activation of PAA systems by diverse carbon-based materials plays a crucial role in addressing emerging environmental contaminants, including various types, structures, and modified forms of carbon materials. However, the structural characteristics and structure-activity relationship of carbon-based materials in the activation of PAA are intricate, while the degradation pathways and dominant active species exhibit diversity. Therefore, it is imperative to elucidate the developmental process of the carbon-based materials/PAA system through resource integration and logical categorization, thereby indicating potential avenues for future research. The present paper comprehensively reviews the structural characteristics and action mechanism of carbon-based materials in PAA system, while also analyzing the development, properties, and activation mechanism of heteroatom-doped carbon-based materials in this system. In conclusion, this study has effectively organized the resources pertaining to prominent research direction of comprehensive remediation of environmental water pollution, thereby elucidating the underlying logic and thought process. Consequently, it establishes robust theoretical foundation for future investigations and applications involving carbon-based materials/PAA system.
RESUMO
Heterogeneous peroxymonosulfate (PMS) treatment is recognized as an effective advanced oxidation process (AOP) for the treatment of organic contaminants. Quantitative structure-activity relationship (QSAR) models have been applied to predict the oxidation reaction rates of contaminants in homogeneous PMS treatment systems but are seldom applied in heterogeneous treatment systems. Herein, we established QSAR models updated with density functional theory (DFT) and machine learning approaches to predict the degradation performance for a series of contaminants in heterogeneous PMS systems. We imported the characteristics of organic molecules calculated using constrained DFT as input descriptors and predicted the apparent degradation rate constants of contaminants as the output. The genetic algorithm and deep neural networks were used to improve the predictive accuracy. The qualitative and quantitative results from the QSAR model for the degradation of contaminants can be used to select the most appropriate treatment system. A strategy for selection of the optimum catalyst for PMS treatment of specific contaminants was also established according to the QSAR models. This work not only increases our understanding of contaminant degradation in PMS treatment systems but also highlights a novel QSAR model to predict the degradation performance in complicated heterogeneous AOPs.
Assuntos
Peróxidos , Relação Quantitativa Estrutura-Atividade , Teoria da Densidade Funcional , Aprendizado de MáquinaRESUMO
Biodenitrification plays a vital role in the remediation of nitrogen-contaminated water. However, influent with a low C/N ratio limits the efficiency of denitrification and causes the accumulation/emission of noxious intermediates. In this study, ß-cyclodextrin-functionalized biochar (BC@ß-CD) was synthesized and applied to promote the denitrification performance of Paracoccus denitrificans when the C/N was only 4, accompanied by increased nitrate reduction efficiency and lower nitrite accumulation and nitrous oxide emission. Transcriptomic and enzymatic activity analyses showed BC@ß-CD enhanced glucose degradation by promoting the activities of glycolysis (EMP), the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle. Notably, BC@ß-CD drove a great generation of electron donors by stimulating the TCA cycle, causing a greater supply of substrate metabolism to denitrification. Meanwhile, the promotional effect of BC@ß-CD on oxidative phosphorylation accelerates electron transfer and ATP synthesis. Moreover, the presence of BC@ß-CD increased the intracellular iron level, causing further improved electron utilization in denitrification. BC@ß-CD helped to remove metabolites and induced positive feedback on the metabolism of P. denitrificans. Collectively, these effects elevated the glucose utilization for supporting denitrification from 36.37% to 51.19%. This study reveals the great potential of BC@ß-CD for enhancing denitrification under low C/N conditions and illustrates a potential application approach for ß-CD in wastewater bioremediation.
Assuntos
Elétrons , beta-Ciclodextrinas , Carvão Vegetal , Nitratos/metabolismo , Desnitrificação , Nitrogênio/metabolismoRESUMO
The regulation of bacterial quorum sensing (QS) has been used to inhibit biofouling in wastewater treatment plants and the formation of biofilms. In contrast to traditional QS regulation strategies, this study aimed to obstruct the transmembrane transport process of QS signals to decrease their extracellular accumulation. Three phytochemicals, astragaloside IV, eugenol, and baicalin were selected, their effects on biofilm formation by Pseudomonas aeruginosa PA14 were studied, and the mechanisms determined. The inhibition efficiency of biofilm formation by 50 mg/L astragaloside IV, 1 mg/L eugenol, and 1 mg/L baicalin were 37%, 26%, and 26%, respectively. Confocal laser scanning microscopy and analysis of extracellular polymeric substances indicated that the three inhibitors affected the structure and composition of the biofilms. Furthermore, bacterial motility and a variety of QS-related virulence factors were suppressed by the inhibitor treatment due to changes in bacterial QS. Notably, the three inhibitors all decreased the extracellular concentration of the QS signaling molecule 3-oxo-C12-homoseine lactone by affecting the function of efflux pump MexAB-OprM. This indirectly interfered with the bacterial QS system and thus inhibited biofilm formation. In conclusion, this study revealed the inhibitory effects and inhibition mechanism of three phytochemicals on efflux pump and QS of P. aeruginosa and realized the inhibition on biofilm formation. We update the efflux pump inhibitor library and provide a new way for biofilm contamination control.
Assuntos
Percepção de Quorum , Saponinas , Eugenol/farmacologia , Biofilmes , Saponinas/farmacologia , Antibacterianos/farmacologia , Proteínas de BactériasRESUMO
Current research has widely applied heteroatom doping for the promotion of catalyst activity in peroxymonosulfate (PMS) systems; however, the relationship between heteroatom doping and stimulated activation mechanism transformation is not fully understood. Herein, we introduce nitrogen and sulfur doping into a Co@rGO material for PMS activation to degrade tetracycline (TC) and systematically investigate how heteroatom doping transformed the activation mechanism of the original Co@rGO/PMS system. N was homogeneously inserted into the reduced graphene oxide (rGO) matrix of Co@rGO, inducing a significant increase in the degradation efficiency without affecting the activation mechanism transformation. Additionally, S doping converted Co3O4 to Co4S3 in Co@rGO and transformed the cooperative oxidation pathway into a single non-radical pathway with stronger intensity, which led to a higher stability against environmental interferences. Notably, based on density functional theory (DFT) calculations, we demonstrated that Co4S3 had a higher energy barrier for PMS adsorption and cleavage than Co3O4, and therefore, the radical pathway was not easily stimulated by Co4S3. Overall, this study not only illustrated the improvement due to the heteroatom doping of Co@rGO for TC degradation in a PMS system but also bridged the knowledge gap between the catalyst structure and degradation performance through activation mechanism transformation drawn from theoretical and experimental analyses.
Assuntos
Nitrogênio , Peróxidos , Antibacterianos , Cobalto , Grafite , Nitrogênio/química , Óxidos , Peróxidos/química , Enxofre , TetraciclinaRESUMO
Metabolic uncouplers inhibit biofilm and biofouling formation in membrane bioreactor (MBR) systems, which have been considered as a potential biofouling control alternative. To better understand the inhibitory mechanism of uncoupler on biofouling, this study investigated the impact of the uncoupler 3, 3', 4', 5-tetrachlorosalicylanilide (TCS) on biofilm formation of B. subtilis in different development stages. Significant reductions in both the initial bacterial attachment stage and the subsequent biofilm development stage were caused by TCS at 100 µg/L. The motility of B. subtilis in semisolid medium was inhibited by TCS, which explicitly explained the reduction in initial bacterial attachment. Meanwhile, a reduction of extracellular polymeric substance (EPS) secretion owing to TCS suggested why biofilm development was suppressed. In addition, the fluorescent materials in tight-bound EPS (TB-EPS) and loose-bound EPS (LB-EPS) of Bacillus subtilis cultured in different TCS concentrations were distinguished and quantified by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). The results of this study suggested that the biofilm inhibitory mechanism of the uncoupler was both a inhibition in bacterial motor ability and a reduction in EPS secretion.
Assuntos
Incrustação Biológica , Matriz Extracelular de Substâncias Poliméricas , Biofilmes , Reatores Biológicos , EsgotosRESUMO
Municipal sludge disposal and recycle has become a prominent research theme. In this study, a sequential process for integral treatment of municipal sludge was primarily presented, combining acid leaching, anion exchange and aerobic composting. The aim of the process was to remove chromium (Cr) from the sludge and reuse the sludge as manure. Firstly, Cr was removed from municipal sludge via the acid leaching process; the removal rate was up to 57.43%. Then, ion exchange resin was used to remove Cr from leachate; the removal rate reached 95%. Aluminum sheet was used to replace the Cr from eluent; the replacement rate was 63.3%. The aerobic composting process could be successfully warmed up to above 55 °C and lasted for 4 days; the seed germination index reached 68.3%. After the composting process, the residual Cr in sludge mainly existed at a more stable residual state and organic binding state. Overall, this novel sequential process serves as a potential high-efficiency, green, low-energy way for municipal sludge recycle.
Assuntos
Compostagem , Ânions , Esterco , Reciclagem , EsgotosRESUMO
Metal-based catalytic materials exhibit exceptional properties in degrading emerging pollutants within Fenton-like systems. However, the potential risk of metal leaching has become pressing environmental concern. This study addressed scientific issues pertaining to the leaching behavior and control strategies for metal-based catalytic materials. Innovative cobalt-aluminum hydrotalcite (CoAl-LDH) triggered peroxymonosulfate (PMS) activation system was constructed and achieved near-complete removal of Ciprofloxacin (CIP) across diverse water quality environments. Notably, it was found that the tunable ion exchange and Al3+ stabilization of CoAl-LDH occurred due to the particularity of neutral water quality, resulting in significantly lower Co2+ leaching levels (0.321 mg/L) compared to acidic conditions (5.103 mg/L). In light of this, machine learning technology was then employed for the first time to simulate the dynamic trend of Co2+ leaching and elucidated the critical regulatory roles and mechanisms of Al3+, aqueous matrix, and reaction rate. Furthermore, degradation systems based on different water quality and metal leaching levels regulated the generation levels of SO4.- and O2â-, and the unique advantages of free radical attack paths were clarified through CIP degradation products and ecotoxicity analysis. These findings introduced novel insights and approaches for engineering application and pollution control in metal-based Fenton-like water treatment.
RESUMO
Overuse of antibiotics has led to their existence in nitrogen-containing water. The impacts of antibiotics on bio-denitrification and the metabolic response of denitrifiers to antibiotics are unclear. We systematically analyzed the effect of ciprofloxacin (CIP) on bio-denitrification and found that 5 mg/L CIP greatly inhibited denitrification with a model denitrifier (Paracoccus denitrificans). Nitrate reduction decreased by 32.89 % and nitrous oxide emission increased by 75.53 %. The balance analysis of carbon and nitrogen metabolism during denitrification showed that CIP exposure blocked electron transfer and reduced the flow of substrate metabolism used for denitrification. Proteomics results showed that CIP exposure induced denitrifiers to use the pentose phosphate pathway more for substrate metabolism. This caused a substrate preference to generate NADPH to prevent cellular damage rather than NADH for denitrification. Notably, despite denitrifiers having antioxidant defenses, they could not completely prevent oxidative damage caused by CIP exposure. The effect of CIP exposure on denitrifiers after removal of extracellular polymeric substances (EPS) demonstrated that EPS around denitrifiers formed a barrier against CIP. Fluorescence and infrared spectroscopy revealed that the binding effect of proteins in EPS to CIP prevented damage. This study shows that denitrifiers resist antibiotic stress through different intracellular and extracellular defense strategies.
Assuntos
Antibacterianos , Ciprofloxacina , Desnitrificação , Ciprofloxacina/farmacologia , Antibacterianos/farmacologia , Paracoccus denitrificans/metabolismoRESUMO
To preserve the water resources, this study has analyzed the ecotoxicity and antibiotic resistance genes (ARGs) induction capacity of sulfadiazine degradation intermediates resulting from persulfate activation oxidation enhanced by ultraviolet, ultrasound and microwave. The five degradation pathways caused by the contribution discrepancy of electron transfer and singlet oxygen (1O2) and variations in the ecotoxicity of different degradation products were analyzed. Microcosm experiment exhibited that the microbial community in actual water changed significantly with SDZ and degradation intermediates, in which the dominant genera were Aeromonas, Cupriavidus, Elizabethkingia and Achromobacter. Except for the selective pressure on bacteria, the degradation intermediates also exert a certain degree or even stronger induction on sulfonamide ARGs (sul4, sul1 and sul2) than SDZ. Furthermore, the potential hosts for sulfonamide ARGs were revealed by network analysis. These results provide a better understanding of antibiotics degradation mechanism and ARGs occurrence, which is useful for controlling the spread of ARGs.
Assuntos
Antibacterianos , Sulfadiazina , Sulfadiazina/farmacologia , Sulfadiazina/metabolismo , Antibacterianos/farmacologia , Genes Bacterianos/genética , Resistência Microbiana a Medicamentos/genética , SulfonamidasRESUMO
Data-driven approaches that make timely predictions about pollutant concentrations in the effluent of constructed wetlands are essential for improving the treatment performance of constructed wetlands. However, the effect of the meteorological condition and flow changes in a real scenario are generally neglected in water quality prediction. To address this problem, in this study, we propose an approach based on multi-source data fusion that considers the following indicators: water quality indicators, water quantity indicators, and meteorological indicators. In this study, we establish four representative methods to simultaneously predict the concentrations of three representative pollutants in the effluent of a practical large-scale constructed wetland: (1) multiple linear regression; (2) backpropagation neural network (BPNN); (3) genetic algorithm combined with the BPNN to solve the local minima problem; and (4) long short-term memory (LSTM) neural network to consider the influence of past results on the present. The results suggest that the LSTM-predicting model performed considerably better than the other deep neural network-based model or linear method, with a satisfactory R2. Additionally, given the huge fluctuation of different pollutant concentrations in the effluent, we used a moving average method to smooth the original data, which successfully improved the accuracy of traditional neural networks and hybrid neural networks. The results of this study indicate that the hybrid modeling concept that combines intelligent and scientific data preprocessing methods with deep learning algorithms is a feasible approach for forecasting water quality in the effluent of actual engineering.
RESUMO
A highly efficient aerobic denitrifying microbe was isolated from sewage sludge by using a denitrifier enrichment strategy based on decreasing carbon content. The microbe was identified as Pseudomonas mendocina HITSZ-D1 (hereafter, D1). Investigation of the conditions under which D1 grew and denitrified revealed that it performed good growth and nitrate removal performance under a wide range of conditions. In particular, D1 rapidly removed all types of inorganic nitrogen without accumulation of the intermediate products nitrite and nitrous oxide. Overall, D1 showed a total nitrogen removal efficiency >96% at a C/N ratio of 8. The biotransformation modes and fates of three typical types of inorganic nitrogen were also assessed. Moreover, D1 had significantly higher denitrification efficiency and enzyme activities than other aerobic denitrifying microbes (Paracoccus denitrificans, Pseudomonas aeruginosa, and Pseudomonas putida). These results suggest that D1 has great potential for treating wastewater containing high concentrations of nitrogen.
Assuntos
Nitritos , Pseudomonas mendocina , Nitritos/metabolismo , Pseudomonas mendocina/metabolismo , Esgotos , Desnitrificação , Nitratos/metabolismo , Nitrogênio/metabolismo , Nitrificação , AerobioseRESUMO
The main purpose of this study was to explore the pretreatment process of corn starch wastewater (CSW) and engineered microalgae cultivation strategy to improve the nutrient recovery from wastewater and the yield of microalgae lutein. One-stage enzymatic hydrolysis utilizing α-amylase and glucoamylase simultaneously was established to efficiently harvest a maximum concentration of reducing sugar content of 7.26 g/L from CSW in 50 min. Lutein yield of 10.96 mg/L was obtained under 24 h continuous illumination with 2200 Lux light intensity. Furthermore, a cyclic feeding cultivation strategy was developed to improve lutein accumulation and COD removal up to 25.9 mg/L and 50.7%, respectively, after three cultivation cycles. Lutein yield of 14.86 mg/L and COD removal efficiency of 73.2% was achieved with further implementation in actual wastewater. This work provided a new perspective in developing the potential of cultivating microalgae with corn starch wastewater to produce high-value lutein.
Assuntos
Microalgas , Biomassa , Hidrólise , Luteína , Amido , Águas Residuárias , Zea maysRESUMO
Current research focused on developing multiple active species in peroxymonosulfate (PMS) system to degrade contaminants, but deepening concern lacks over why cooperation of those active species facilitated a faster degradation. Here, we employed Co3O4, rGO and Co3O4@rGO composite to activate PMS for tetracycline (TC) degradation, and detected crucial factors toward highest performance of Co3O4@rGO/PMS system. Batch experiments exhibited a satisfactory TC degradation efficiency under Co3O4@rGO/PMS, complete degraded 50 mg/L TC within 20 min. Analytical tests discovered that radical active species generated by Co3O4/PMS and non-radical species by rGO/PMS were successfully co-existed in Co3O4@rGO/PMS system, significantly improving the performance of TC removal. Subsequently, a combination of density functional theory (DFT) calculation and intermediates analysis revealed that, in Co3O4@rGO/PMS system, the cooperation rather than independent effect of radical and non-radical active species expanded TC degradation pathways, enhancing the degradation performance. Furthermore, decent adaptability, stability, and recyclability toward affecting factors variation of Co3O4@rGO/PMS demonstrated it as a potent and economical system to degrade TC. Overall, this study developed a novel Co3O4@rGO/PMS system with a cooperative oxidation pathway for highly efficient TC removal, and managed to clarify why this oxidation pathway achieved high efficiency through a combination of theoretical and experimental method.
Assuntos
Peróxidos , Tetraciclina , Cobalto , ÓxidosRESUMO
Short chain carboxylic acids (SCCAs) production is one of the primary ways to recycle excess sludge (ES). However, the high cost for the SCCAs separation/extraction due to its complete miscibility in water hinders the practical application of SCCAs and the popularization of this recycling way. To overcome this barrier, this study performed an emerging chain elongation (CE) technology to upgrade the SCCAs-rich sludge fermentation broth into the highly hydrophobic medium chain carboxylic acids (MCCAs). In a continuous expanded granule sludge bed (EGSB) reactor, a maximal MCCAs yield of 67.39 % and the corresponding concentration of 9.80 g COD/L (224.97 mM C/L) were achieved. By supplying CO2 at a loading rate of 2 [Formula: see text] to lower the hydrogen partial pressure, the ethanol utilization rate and the resulting MCCAs yield were further improved. In addition, three branched-MCCAs including iso-caproate, iso-heptylate, and iso-caprylate were obtained the first time from waste biomass with the average proportions of 6.17 %, 3.65 %, and 0.8 %, respectively. The branched-MCCAs came from the CE of branched-SCCAs. The granule sludges performing CE were mainly consisted of rod-shaped cells, and dominated by Clostridium sensu stricto and Clostridium IV. This study is expected to lay a foundation for recycling ES to MCCAs.
Assuntos
Ácidos Carboxílicos , Esgotos , Biomassa , Reatores Biológicos , Etanol , FermentaçãoRESUMO
As a widely used detergent, anionic surfactant linear alkylbenzene sulfonates (LAS) is a common toxic pollutant in wastewater. In this study, Pseudomonas sp. strain H6 was isolated from activated sludge and municipal wastewater, which had good degradation effect on LAS. The results showed that strain H6 could grow with LAS as the sole carbon source. When the concentration of LAS was less than 100 mg/L, strain H6 could degrade more than 80% of the LAS within 24 h. Meanwhile, the growth of strain H6 increased with the increase of LAS concentration, reaching the maximum growth at the presence of 100 mg/L LAS. When the concentration of LAS was over 100 mg/L, strain H6's cell growth and degradation of LAS showed a downward trend due to the strong toxicity of LAS, and the degradation rate of LAS almost tended to zero with 500 mg/L LAS. Further mutagenesis analysis of strain H6 showed that positive mutation occurred under ultraviolet and nitrite mutagenesis with using ampicillin to increase the screening pressure, and the degradation rate of LAS was 44.91% higher than that of original strain.
Assuntos
Ácidos Alcanossulfônicos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Mutagênese , Esgotos/microbiologia , Tensoativos/metabolismo , Águas ResiduáriasRESUMO
Herein, a novel innovative lipid co-extraction strategy using the biodiesel-producing microalga Chlorella pyrenoidosa and planktonic cladoceran Daphnia was proposed. Co-extraction occurred as Daphnia ingested and digested microalgal cells in a pre-treatment process; thereafter, lipids from these organisms were extracted. Composition of fatty acids from C. pyrenoidosa and Daphnia were appropriate as potential biodiesel feedstocks. Daphnia had different absorption and conversion capacities of various fatty acids from C. pyrenoidosa, which showed potential for improving biodiesel characteristics. Linoleic acid (LA, C18:2n-6) and alpha-linolenic acid (ALA, C18:3n-3) were absorbed significantly into the body of Daphnia. The optimal lipid extraction and fatty acid methyl esters (FAMEs) recovery rates were up to 41.08% and 12.35%, respectively, which were greater than that of the traditional lipid extraction method due to the rich oil content of Daphnia. Overall, this lipid co-extraction process serves a potential Daphnia utilization as an economical, green, low-energy way for microalgae biodiesel production.
RESUMO
The cultivation of microalgae in municipal wastewater not only purifies the wastewater but also transforms nutrients into biomass that contains high-value lipids. In this study, conventional static bottom-magnetic field (bottom-MF) equipment and cost-effective bypass-magnetic field (bypass-MF) equipment were designed and independently coupled with a microalgae-wastewater system in different positions to evaluate the effect of magnetic field (MF) on microalgae biomass production and lipid accumulation. When the MF equipment was applied in the wastewater pretreatment unit, the bottom-MF pretreatment mode exhibited a more beneficial effect on subsequent biomass and lipid accumulation. However, when the MF equipment was applied in the microalgae-wastewater culture unit, there was no significant difference between the bottom-MF and bypass-MF modes. The results of the orthogonal experiment suggested the optimum conditions for lipid production were wastewater pretreatment by bottom-MF at 5000 Gs for 1 h, followed by microalgae-wastewater culture treatment by bypass-MF at 5000 Gs for 3 h.
RESUMO
Biofouling is a limiting bottleneck in the development of membrane bioreactor (MBR) since the birth of this technology. Recently, the biofouling control strategy based on interfering with the bacterial quorum sensing (QS) system is highly desirable for biofouling control in MBR. In this study, three lab-scale parallel MBR systems were operated over 100 days to investigate the inhibitory effect of a metabolic uncoupler (3,3',4',5-tetrachlorosalicylanilide, TCS) on biofouling and the potential mechanism for biofouling control. Compared to the control MBR, the fouling cycle duration of MBR 2 with 100 µg/L TCS extended over two times. The attached biomass on membrane in MBR 2 decreased over 50% at the end of each operating period, which indicated that the addition of TCS significantly mitigated microorganisms accumulation on membrane. The content of interspecies QS signal (autoinducer-2) and intraspecific QS signals (N-octanoyl-dl-homoserine lactone, C8-HSL) was reduced by the TCS, suggesting the secretion of QS signals in MBR were affected by uncoupler. Although the addition of TCS induced brief fluctuations of extracellular proteins and polysaccharides, microorganisms seemed to rapidly acclimatize to the presence of TCS and then the secretion of extracellular polymeric substances (EPS) was inhibited by 100 µg/L TCS. The continuous operation of MBR was not be affected by the low-concentration uncoupler via the analysis of substrate removal and sludge growth. This study systematically evaluated the effect and inhibitory efficiency of TCS on biofouling, biomass accumulation, QS signals, EPS and treatment performances, demonstrating the feasibility of metabolic uncoupler for biofouling control in MBR.
Assuntos
Reatores Biológicos/microbiologia , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , 4-Butirolactona/análogos & derivados , Bactérias , Incrustação Biológica , Membranas , Percepção de Quorum/efeitos dos fármacos , Esgotos/microbiologiaRESUMO
In this work, a novel flocculation process by using nano-Fe3O4 coated with polyethyleneimine (Fe3O4@PEI) as magnetic seeds was developed to harvest the microalgae cultivated in urban sewage. Experiment results indicated that the harvest efficiency of Chlorella pyrenoidosa (0.5â¯g/L) was 98.92⯱â¯0.41% under the optimal conditions of Fe3O4@PEI dose of 20â¯mL/L, flocculation time of 20â¯min, and stirring speed of 800â¯rpm (3â¯min), while that of Scenedesmus obliquus (0.4â¯g/L) was 98.45⯱â¯0.35% under a Fe3O4@PEI dose of 16â¯mL/L, flocculation time of 15â¯min, and stirring speed of 730â¯rpm (3â¯min). Moreover, the process did not reduce the lipid content of microalgae and quality of biodiesel. After microalgae harvest, Fe3O4@PEI could be recovered by ultrasonication, re-wrapped with polyethyleneimine and reused to reduce operational cost.