Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 187, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582787

RESUMO

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Assuntos
Lobos , Cães , Animais , Lobos/genética , Mapeamento Cromossômico , Alelos , Polimorfismo de Nucleotídeo Único , Nucleotídeos , Demografia
2.
PLoS One ; 14(9): e0222340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509580

RESUMO

Growth hormone (GH) is an important hormone released by the pituitary gland that plays a key role in the growth and development of organisms. In our study, TargetScan analysis and the dual luciferase reporter assays were used to predict and screen for miRNAs that might act on the rat Gh1 gene, and we identified miR-543-5p. Then, the GH3 cell line and the primary rat pituitary cells were transfected with miRNA mimic, inhibitor, and siRNA. We detected the Gh1 gene expression and the GH secretion by real-time PCR and ELISAs, respectively, to verify the regulatory effect of miR-543-5p on GH secretion. The results showed that miR-543-5p can inhibit Gh1 mRNA expression and reduce GH secretion. MiR-543-5p inhibitor upregulated Gh1 mRNA expression and increased GH secretion compared with the negative control. In summary, miR-543-5p downregulates Gh1 expression, resulting in a decrease in GH synthesis and secretion, which demonstrates the important role of miRNAs in regulating GH and animal growth and development.


Assuntos
Hormônio do Crescimento/genética , MicroRNAs/genética , Hormônios Adeno-Hipofisários/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Expressão Gênica , Regulação da Expressão Gênica/genética , Hormônio do Crescimento/metabolismo , Masculino , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo , Cultura Primária de Células , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA