Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Environ Sci Technol ; 58(6): 3019-3030, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38308619

RESUMO

Hydrochar, recognized as a green and sustainable soil amendment, has garnered significant attention. However, information on the aging process in soil and the temporal variability of hydrochar remains limited. This study delves deeper into the interaction between hydrochar and soil, focusing on primary factors influencing hydrochar aging during a 30-month rice-wheat rotation system. The results showed that the initial aging of hydrochar (0-16 months) is accompanied by the development of specific surface area and leaching of hydrochar-derived dissolved organic matter (HDOM), resulting in a smaller particle size and reduced carbon content. The initial aging also features a mineral shield, while the later aging (16 to 30 months) involves surface oxidation. These processes collectively alter the surface charge, hydrophilicity, and composition of aged hydrochar. Furthermore, this study reveals a dynamic interaction between the HDOM and DOM derived from soil, plants, and microbes at different aging stages. Initially, there is a preference for decomposing labile carbon, whereas later stages involve the formation of components with higher aromaticity and molecular weight. These insights are crucial for understanding the soil aging effects on hydrochar and HDOM as well as evaluating the interfacial behavior of hydrochar as a sustainable soil amendment.


Assuntos
Matéria Orgânica Dissolvida , Oryza , Triticum , Solo , Carbono
2.
Environ Res ; 243: 117853, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070856

RESUMO

Biochar-based organic fertilizer is a new type of ecological fertilizer formulated with organic fertilizers using biochar as the primary conditioning agent, which has received wide attention and application in recent years. This study conducted a comprehensive bibliometric analysis of the main hot spots and research trends in the field of biochar-based organic fertilizer research by collecting indicators (publication year, number, prominent authors, and research institutions) in the Web of Science database. The results showed that the research in biochar-based organic fertilizer has been in a rapid development stage since 2015, with exponential growth in publications number; the main institution with the highest publications number was Northwest Agriculture & Forestry University; the researchers with the highest number of publications was Mukesh Kumar Awasthi; the most publications country is China by Dec 30, 2022. The hot spots of biochar-based organic fertilizer research have been nitrogen utilization, greenhouse gas emission, composting product quality and soil fertility. Biochar reduces ammonia volatilization and greenhouse gas emissions from compost mainly through adsorption. The results showed that adding 10% biochar was an effective measure to achieve co-emission reduction of ammonia and greenhouse gases in composting process. In addition, biochar modification or combination with other additives should be the focus of future research to mitigate ammonia and greenhouse gas emissions from composting processes.


Assuntos
Carvão Vegetal , Compostagem , Gases de Efeito Estufa , Humanos , Gases de Efeito Estufa/análise , Amônia , Fertilizantes/análise , Volatilização , Nitrogênio/análise , Solo , Agricultura , Óxido Nitroso
3.
J Environ Manage ; 360: 121165, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759554

RESUMO

As an emerging material in the field of environmental remediation, biochar produced by carbonisation of organic solid waste has been widely used in the remediation of antibiotic wastewater due to its environmental friendliness and excellent adsorption properties. This study analyses the current literature in the field in a comprehensive and scientific manner using CiteSpace and VOSviewer technologies. Between 2011 and 2023, a total of 1162 papers were published in this domain, spanning three distinct stages: applied methods, mechanism investigation, and enhanced improvement. The results of keyword clustering indicate that the remediation of antibiotics complexed with multiple pollutants by biochar is the main research topic, followed by the remediation of antibiotics by biochar in combination with other technologies. Furthermore, drawing from current research hotspots in antibiotic remediation using biochar, this study identified the pivotal mechanisms involved: (1) The primary mechanisms by which raw biochar remediates antibiotics include π-π electron donor-acceptor interactions, hydrophobic interactions, electrostatic interactions, hydrogen-bonding, and pore filling. (2) Steam activation, acid/base, metal salt/metal oxide, and clay mineral modification can improve the physical/chemical properties of biochar, enhancing its adsorptive removal of antibiotics. (3) Biochar activated persulfate and degraded antibiotics via free radical pathways (SO4-•, •OH and O2-•) as well as non-free radical pathways (1O2 and electron transfer). In addition, the challenge and prospect of biochar engineering applications for antibiotic remediation lies in improving the main mechanism of antibiotic remediation by biochar. The prospective utilization of biochar in enhancing the remediation of antibiotic-related pollutants holds tremendous value for the future.


Assuntos
Antibacterianos , Carvão Vegetal , Carvão Vegetal/química , Antibacterianos/química , Adsorção , Recuperação e Remediação Ambiental/métodos , Poluentes Químicos da Água/química , Águas Residuárias/química
4.
Environ Res ; 226: 115662, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913827

RESUMO

Soy whey is an abundant, nutrient-rich and safe wastewater produced in tofu processing, so it is necessary to valorize it instead of discarding it as sewage. Whether soy whey can be used as a fertilizer substitute for agricultural production is unclear. In this study, the effects of soy whey serving as a nitrogen source to substitute urea on soil NH3 volatilization, dissolved organic matter (DOM) components and cherry tomato qualities were investigated by soil column experiment. Results showed that the soil NH4+-N concentrations and pH values of the 50% soy whey fertilizer combined with 50% urea (50%-SW) and 100% soy whey fertilizer (100%-SW) treatments were lower than those of 100% urea treatment (CKU). Compared with CKU, 50%-SW and 100%-SW treatments increased the abundance of ammonia oxidizing bacteria (AOB) by 6.52-100.89%, protease activity by 66.22-83.78%, the contents of total organic carbon (TOC) by 16.97-35.64%, humification index (HIX) of soil DOM by 13.57-17.99%, and average weight per fruit of cherry tomato by 13.46-18.56%, respectively. Moreover, soy whey as liquid organic fertilizer reduced the soil NH3 volatilization by 18.65-25.27% and the fertilization cost by 25.94-51.87% compared with CKU. This study provides a promising option with economic and environmental benefits for soy whey utilization and cherry tomato production, which contributes to the win-win effectiveness of sustainable production for both the soy products industry and agriculture.


Assuntos
Solanum lycopersicum , Alimentos de Soja , Solo/química , Amônia/química , Soro do Leite/química , Volatilização , Fertilizantes/análise , Ureia , Frutas/química , Agricultura/métodos , Nitrogênio/análise , Proteínas do Soro do Leite
5.
J Environ Manage ; 342: 118135, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37216875

RESUMO

Rice grown on Cd-contaminated soil may accumulate Cd in grain, which is extremely harmful to human health. Several managements are developed to reduce the Cd load in rice, while in-situ immobilization by soil amendments has been attractive for its feasibility. Waste-derived hydrochar (HC) has been shown effective at immobilizing Cd in soil. However, potential plant negative effects and huge application amount are crucial to resolving in extensive application of HC. Nitric acid ageing may be an effective method to deal with these problems. In this paper, HC and nitrated hydrochar (NHC) were added to the Cd-contaminated soil at rates of 1% and 2% in a rice-soil column experiment. Results showed that NHC markedly promoted root biomass of rice by 58.70-72.78%, whereas HC had effects of 35.86-47.57%. Notably, NHC at 1% reduced the accumulation of Cd in rice grain, root and straw by 28.04%, 15.08% and 11.07%, respectively. A consistent decrease of 36.30% in soil EXC-Cd concentration was caused by NHC-1%. Following soil microbial community was shifted greatly under HC and NHC applications. The relative abundance of Acidobacteria was decreased by 62.57% in NHC-2% and by 56.89% in HC-1%. Nevertheless, Proteobacteria and Firmicutes were promoted by NHC addition. In contrast to HC, co-occurrence network of dominated bacteria was more complex and centralized generated by NHC. Key bacteria in that metabolic network of NHC such as Anaerolineae and Archangiaceae played key roles in Cd immobilization. These observations verified that NHC was more efficient to decrease Cd accumulation in rice and could alleviate the negative roles to plant by microbial changings in community composition and network. It could provide an enrichment of paddy soil microbial responds to the interaction of NHC with Cd and lay a foundation for the remediation of Cd-contaminated soil by NHC.


Assuntos
Oryza , Poluentes do Solo , Humanos , Solo , Cádmio/metabolismo , Nitratos , Bactérias/metabolismo , Grão Comestível/química , Grão Comestível/metabolismo , Poluentes do Solo/análise
6.
J Environ Sci (China) ; 126: 249-262, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503753

RESUMO

AgCl/ZnO/g-C3N4, a visible light activated ternary composite catalyst, was prepared by combining calcination, hydrothermal reaction and in-situ deposition processes to treat/photocatalyse tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater under visible light. The morphological, structural, electrical, and optical features of the novel photocatalyst were characterized using scanning electron microscopy (SEM), UV-visible light absorption spectrum (UV-Vis DRS), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and transient photocurrent techniques. All analyses confirmed that the formation of heterojunctions between AgCl/ZnO and g-C3N4 significantly increase electron-hole transfer and separation compared to pure ZnO and g-C3N4. Thus, AgCl/ZnO/g-C3N4 could exhibit superior photocatalytic activity during TC-HCl assays (over 90% removal) under visible light irradiation. The composite could maintain its photocatalytic stability even after four consecutive reaction cycles. Hydrogen peroxide (H2O2) and superoxide radical (·O2) contributed more than holes (h+) and hydroxyl radicals (·OH) to the degradation process as showed by trapping experiments. Liquid chromatograph-mass spectrometer (LC-MS) was used for the representation of the TC-HCl potential degradation pathway. The applicability and the treatment potential of AgCl/ZnO/g-C3N4 against actual pharmaceutical wastewater showed that the composite can achieve removal efficiencies of 81.7%, 71.4% and 69.0% for TC-HCl, chemical oxygen demand (COD) and total organic carbon (TOC) respectively. AgCl/ZnO/g-C3N4 can be a prospective key photocatalyst in the field of degradation of persistent, hardly-degradable pollutants, from industrial wastewater and not only.


Assuntos
Tetraciclina , Águas Residuárias , Peróxido de Hidrogênio , Estudos Prospectivos , Espectroscopia de Infravermelho com Transformada de Fourier , Luz , Preparações Farmacêuticas
7.
Environ Res ; 214(Pt 2): 113997, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934142

RESUMO

Biogas slurry (BS) and hydrothermal carbonization aqueous products (HAP), which are rich in nitrogen (N) and dissolved organic matter (DOM), can be used as organic fertilizer to substitute inorganic N fertilizer. To evaluate the effects of co-application of BS and HAP on the ammonia (NH3) volatilization and soil DOM content in wheat growth season, we compared six treatments that substituting 50%, 75%, and 100% of urea-N with BS plus HAP at low (L) or high (H) ratio, named BCL50, BCL75, BCL100, BCH50, BCH75, BCH100, respectively. Meanwhile, urea alone treatment was set as the control (CKU). The results showed that both BCL and BCH treatments significantly mitigate the NH3 volatilizations by 9.1%-45.6% in comparison with CKU (P < 0.05), whose effects were correlated with soil NH4+-N content. In addition, the decrease in soil urease activity contributed to the lower NH3 volatilization following application of BS plus HAP. Notably, BS plus HAP applications increased the microbial byproduct- and humic acid-like substances in soil by 9.9%-74.5% and 100.7%-451.9%, respectively. Consequently, BS and HAP amended treatments significantly increased soil humification index and DOM content by 13.7%-41.2% and 38.4%-158.7%, respectively (P < 0.05). This study suggested that BS and HAP could be co-applied into agricultural soil as a potential alternative of inorganic fertilizer N, which can decrease NH3 loss but increase soil fertility.


Assuntos
Fertilizantes , Solo , Agricultura/métodos , Amônia/análise , Biocombustíveis , Fertilizantes/análise , Nitrogênio/análise , Triticum , Ureia , Volatilização
8.
J Environ Manage ; 318: 115541, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35777158

RESUMO

Dissolved organic matter (DOM) plays a critical role in the global carbon cycle and provides food and energy for aquatic organisms. Recently, hydrochar, as a solid carbonaceous substance derived from hydrothermal carbonization, has been increasingly used as a soil amendment. Upon entering the soil, dissolved components (DHCs) were released from hydrochar as exogenous DOM, finally entering the aquatic ecosystems by runoff, which participates in environmental geochemical processes. However, relevant reports revealing the response of the aquatic ecosystem to the input of DHCs remain insufficiently elucidated. For the first time, the fundamental features of DHCs and their influence on water quality and aquatic biological function were investigated in this study. DHCs at 260 °C (DHC260) had lower yields, a greater [C/N], worse biodegradability, and larger humic acid relative amounts than did DHCs at 180 °C (DHC180). The DHC structural alterations in periphyton-incubated aquatic ecosystems suggested that protein substances were more easily degraded or assimilated by periphyton, especially for DHC180, with rates of decrease of 34.5-63.5%. The increased chemical oxygen demand (COD) degradation in the DHC260 treatments was most likely due to humic acid substances with higher COD equivalents. Furthermore, DHC260 caused phosphorus to accumulate in periphyton, reducing aquatic phosphorus concentration. Notably, the abundances of Flavobacteria and Cyanobacteria associated with water blooms increased 12.7-25.5- and 1.3-8.3-fold, respectively; consequently, the promotional impact of DHCs on algal blooms should be considered. This result extends the nonnegligible role of DHCs in aquatic ecosystems and underlines the need to regulate the hydrochar application process.


Assuntos
Esterco , Perifíton , Ecossistema , Substâncias Húmicas/análise , Fósforo , Solo/química , Qualidade da Água
9.
J Clin Microbiol ; 59(9): e0251720, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34133891

RESUMO

Rapid and accurate diagnosis of bacterial carbapenemases remains a major challenge for clinical laboratories. A novel assay was developed here using fluorescence identification of ß-lactamase activity (FIBA) to permit rapid detection and classification of bacterial carbapenemases. By mixing a fluorogenic ß-lactamase substrate, ß-LEAF (ß-lactamase enzyme-activated fluorophore), with bacterial isolates plus the respective inhibitor (imipenem for noncarbapenemase ß-lactamases, clavulanic acid for type A carbapenemases, and EDTA for type B carbapenemases), objective results with 95% to 100% sensitivity and specificity were generated in 10 min. FIBA is ≈$1/test and consists of only a single mixing step. Given the combination of rapidity, accuracy, low cost, and simplicity, this novel carbapenemase detection and classification assay is well positioned to be applied in clinical microbiology laboratories to provide guidance for the choice of proper treatment and control of globally prevalent carbapenemase-positive infections.


Assuntos
Enterobacteriaceae , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Humanos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
10.
J Environ Manage ; 293: 112909, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102501

RESUMO

The effects of PBC and HBC on rice production, NUE and corresponding mechanisms were examined. Six treatments, P05, P30, H05, H30 (P: PBC; H: HBC; 05 and 30 represented the application rate of 0.5 and 3.0% w/w), CKU (urea application without char) and CK (no application of char and urea), were set up. Results showed that P05, P30 and H05 increased grain yield by 1.8-7.3% (P > 0.05), whereas H30 reduced grain yield by 60.4% (P < 0.05), compared to CKU. Meanwhile, HI under P05, P30 and H05 increased by 3.4-3.6%, while H30 decreased by 9.1% (P < 0.05). NUE and NAE showed similar trends with rice yield. By investigation, the excessive introduction of BDOM plays a crucial role in the reduction of rice production and NUE under higher HBC application. GC-MS/MS analysis showed that the soluble BDOM of HBC and PBC was quite different, and compounds such as 2,6-dimethoxyphenol might stress rice growth. ESI-FT-ICR-MS analysis showed that the BDOM of HBC contained a certain quantity of aromatic compounds, which may also stress rice growth. Overall, HBC pretreatment should be conducted, and the application rate should be strictly controlled before its agricultural application.


Assuntos
Oryza , Carvão Vegetal , Fertilizantes/análise , Nitrogênio/análise , Solo , Espectrometria de Massas em Tandem
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(8): 791-796, 2021 Aug 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34511167

RESUMO

OBJECTIVES: To study the difference in cognitive impairment between the children with benign childhood epilepsy with centrotemporal spikes (BECT) and attention deficit hyperactivity disorder (ADHD) and those with BECT or ADHD alone. METHODS: A prospective study was performed on 80 children with BECT and ADHD, 91 children with BECT, and 70 children with ADHD , who were diagnosed with the diseases for the first time. Seventy children of the same age who underwent physical examination were enrolled as the healthy control group. Event-related potential P300, Wechsler Intelligence Scale for Children, and integrated visual and auditory continuous performance test were used to measure and compare each index between groups. RESULTS: Compared with the healthy control group, the BECT+ADHD group, the BECT group, and the ADHD group had a significantly prolonged P300 latency, a significant reduction in the amplitude of P300, and significant reductions in the scores of verbal comprehension index (VCI), perceptual reasoning index (PRI), working memory index (WMI), processing speed index (PSI), full scale intelligence quotient (FSIQ), auditory response control quotient (ARCQ), visual response control quotient, full response control quotient (FRCQ), auditory attention quotient (AAQ), visual attention quotient, and full attention quotient (P<0.05). Compared with the BECT group, the BECT+ADHD group had a significantly prolonged P300 latency, a significant reduction in the amplitude of P300, and significant reductions in the scores of VCI, PRI, WMI, PSI, FSIQ, and FRCQ (P<0.05). Compared with the ADHD group, the BECT+ADHD group had a significantly prolonged P300 latency, a significant reduction in the amplitude of P300, and significant reductions in the scores of VCI, PRI, FSIQ, ARCQ, FRCQ, and AAQ (P<0.05). CONCLUSIONS: Compared with the children with BECT or ADHD alone, the children with both BECT and ADHD have basically the same fields of cognitive impairment but a higher degree of cognitive impairment in some fields.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Disfunção Cognitiva , Epilepsia , Criança , Disfunção Cognitiva/etiologia , Humanos , Estudos Prospectivos , Escalas de Wechsler
12.
Emerg Infect Dis ; 26(4): 793-795, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32186503

RESUMO

We developed a carbapenemase test based on the ability of imipenem to inhibit noncarbapenemase ß-lactamases. The test uses bacterial isolates with a fluorescent ß-lactamase substrate, producing objective results with 100% sensitivity and specificity in 10 minutes. The assay is inexpensive and consists of only 1 mixing step.


Assuntos
Proteínas de Bactérias , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Sensibilidade e Especificidade , beta-Lactamases/genética
13.
Environ Sci Technol ; 54(5): 2715-2725, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32003984

RESUMO

The benefits and disadvantages of hydrochar incorporation into soil have been heavily researched. However, the effect of hydrochar application on the soil microbial communities and the molecular structure of native soil organic carbon (SOC) has not been thoroughly elucidated. This study conducted an incubation experiment at 25 °C for 135 days using a soil column with 0.5 and 1.5% hydrochar-amended paddy soil to explore the interconnections between changes in soil properties and microbial communities and shifts in native SOC structure using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) and NMR after hydrochar application. Hydrochar addition decreased the labile SOC fraction by 15.6-33.6% and increased the stable SOC fraction by 10.3-27.0%. These effects were significantly stronger for 1.5% hydrochar-treated soil. Additionally, hydrochar addition induced the native SOC with 1.0-3.0% more carbon and 6.0-13.0% higher molecular weight. The SOC in hydrochar-amended soil contained more aromatic compounds but fewer carbohydrates and lower polarity. This was resulted by a statistically significant reduction in Sphingobacterium, which was active in polycyclic aromatic hydrocarbon degradation, and an increase in Flavobacterium, Anaerolinea, Penicillium, and Acremonium, which were the efficient decomposers of labile SOC. These findings will help elucidate the potential influence of hydrochar on the carbon biogeochemical cycle in the soil.


Assuntos
Microbiota , Solo , Carbono , Estrutura Molecular , Microbiologia do Solo
14.
Antimicrob Agents Chemother ; 60(7): 4229-36, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27139485

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes considerable morbidity and mortality, specifically during intensive care. Antibiotic-resistant variants of this organism are more difficult to treat and cause substantial extra costs compared to susceptible strains. In the laboratory, P. aeruginosa rapidly developed resistance to five medically relevant antibiotics upon exposure to stepwise increasing concentrations. At several time points during the acquisition of resistance, samples were taken for whole-genome sequencing. The increase in the MIC of ciprofloxacin was linked to specific mutations in gyrA, parC, and gyrB, appearing sequentially. In the case of tobramycin, mutations in fusA, HP02880, rplB, and capD were induced. The MICs of the beta-lactam compounds meropenem and ceftazidime and the combination of piperacillin and tazobactam correlated linearly with beta-lactamase activity but not always with individual mutations. The genes that were mutated during the development of beta-lactam resistance differed for each antibiotic. A quantitative relationship between the frequency of mutations and the increase in resistance could not be established for any of the antibiotics. When the adapted strains are grown in the absence of the antibiotic, some mutations remained and others were reversed, but this reversal did not necessarily lower the MIC. The increased MIC came at the cost of moderately reduced cellular functions or a somewhat lower growth rate. In all cases except ciprofloxacin, the increase in resistance seems to be the result of complex interactions among several cellular systems rather than individual mutations.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Ceftazidima/farmacologia , Ciprofloxacina/farmacologia , DNA Girase/genética , DNA Topoisomerase IV/genética , Resistência Microbiana a Medicamentos/genética , Meropeném , Testes de Sensibilidade Microbiana , Mutação/genética , Piperacilina/farmacologia , Pseudomonas aeruginosa/genética , Tienamicinas/farmacologia , Tobramicina/farmacologia , beta-Lactamases/genética , beta-Lactamas/farmacologia
15.
Ecotoxicol Environ Saf ; 124: 344-350, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26590696

RESUMO

Vegetable cultivation in soils polluted with heavy metals, antibiotics and a high abundance of antibiotic-resistance genes (ARGs) can seriously threaten human health through the food chain. Therefore, novel techniques that not only remediate soil, but also ensure food security are urgently required. In the present study, two successive washings with 20gL(-1) of sophoroliplid solution plus ultrasonication (35kHz) were effective in extracting 71.2% Cd, 88.2% tetracycline, 96.6% sulfadiazine, and 100% roxithromycin. Simultaneously, relative abundance of ARGs (tetM, tetX, sulI, and sulII) was decreased to 10(-7)-10(-8) (ARG copies/16S copies). Further, lettuce cultivation in the 2nd washed soil showed significant improvement in vegetable growth indices (fresh/dry weight, root surface area, chlorophyll content and soluble protein content) and a decrease in isolate counts for antibiotic-resistant bacterial endophytes and ARG abundance in lettuce tissues. This combined cleanup strategy provides an environmentally friendly technology for ensuring vegetable security in washed soils.


Assuntos
Agricultura/métodos , Antibacterianos/isolamento & purificação , Cádmio/isolamento & purificação , Glicolipídeos , Poluentes do Solo/isolamento & purificação , Solo/química , Antibacterianos/metabolismo , Bactérias/metabolismo , Cádmio/metabolismo , Resistência Microbiana a Medicamentos/genética , Poluição Ambiental , Estudos de Viabilidade , Lactuca/metabolismo , Metais Pesados , Tetraciclina
16.
Environ Monit Assess ; 188(5): 283, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27071661

RESUMO

A floating bed system vegetated with Oenanthe javanica was adopted in this study to treat two types of low-pollution wastewater (LPW): polluted river water (PRW) and treated domestic wastewater (DW). The water was treated for 111 days during the low-temperature season. The results indicated that the total nitrogen (TN) removal rates were higher in the DW groups than in the PRW groups during the initial 30 days. This difference may stem from the different C/N ratio of the influent. As the water temperature rose above 15.5 °C after March 12, the purification capability of nitrogen in the DW groups was enhanced, and the removal rates of TN were 89.8 and 76.8 % in DW and the control 2 at 111 days. Conversely, the performance of total phosphorus (TP) removal was robust during the initial stage of the experiment, despite receiving domestic wastewater with a relatively high N/P ratio (16:1). The TP removal rates in DW were as high as 91.5 % compared to 78.9 % in PRW at 30 days. At the same time, the N/P ratios of plant tissue were higher in the DW groups compared to that in the PRW groups. Plant uptake played a significant role in nutrient removal in the PRW groups (52.5 % for TN, 68.2 % for TP), followed by sedimentation. In contrast, plant uptake only accounted for 25.3 % of TN removal and 24.1 % of TP removal in DW. The results provide engineering parameters for the future design of an ecological remediation technology for LPW purification.


Assuntos
Biodegradação Ambiental , Temperatura Baixa , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Plantas , Rios/química , Poluição da Água/prevenção & controle
17.
Antimicrob Agents Chemother ; 58(8): 4371-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24841263

RESUMO

Bacteria can become resistant not only by horizontal gene transfer or other forms of exchange of genetic information but also by de novo by adaptation at the gene expression level and through DNA mutations. The interrelationship between changes in gene expression and DNA mutations during acquisition of resistance is not well documented. In addition, it is not known whether the DNA mutations leading to resistance always occur in the same order and whether the final result is always identical. The expression of >4,000 genes in Escherichia coli was compared upon adaptation to amoxicillin, tetracycline, and enrofloxacin. During adaptation, known resistance genes were sequenced for mutations that cause resistance. The order of mutations varied within two sets of strains adapted in parallel to amoxicillin and enrofloxacin, respectively, whereas the buildup of resistance was very similar. No specific mutations were related to the rather modest increase in tetracycline resistance. Ribosome-sensed induction and efflux pump activation initially protected the cell through induction of expression and allowed it to survive low levels of antibiotics. Subsequently, mutations were promoted by the stress-induced SOS response that stimulated modulation of genetic instability, and these mutations resulted in resistance to even higher antibiotic concentrations. The initial adaptation at the expression level enabled a subsequent trial and error search for the optimal mutations. The quantitative adjustment of cellular processes at different levels accelerated the acquisition of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Adaptação Fisiológica , Amoxicilina/farmacologia , Sequência de Bases , Resistência Microbiana a Medicamentos/genética , Enrofloxacina , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fluoroquinolonas/farmacologia , Perfilação da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutação , Resposta SOS em Genética/efeitos dos fármacos , Análise de Sequência de DNA , Tetraciclina/farmacologia , Fatores de Tempo
18.
J Hazard Mater ; 469: 133946, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442603

RESUMO

Hydrothermal carbonization process water (HTPW) has been utilized as a substitute for chemical fertilizers in agricultural applications. However, the input of HTPW into paddy water, particularly the significant proportion of dissolved organic matter (DOM) in HTPW (DOM-HTPW), directly engages in photochemical transformations, a phenomenon often overlooked. This study observed a consistent decrease in humification (SUVA280, 7.7-53.9%) and aromaticity (SUVA254, 6.1-40.0%) of DOM-HTPW after irradiation. The primary active photobleaching components of DOM-HTPW varied depending on the feedstock, such as protein for chicken manure DOM-HTPW and lignin for rice straw DOM-HTPW. The photochemical activity of DOM-HTPW was augmented by its lower molecular weight and higher hydrophilic composition, particularly evident in chicken manure DOM-HTPW, which exhibited higher generation rates for 1O2 (35.1-37.1%), 3DOM* (32.8-43.9%), and O2•- (28.6-48.8%) as measured by molecular probes. DOM-HTPW effectively facilitated the phototransformation of tetracycline, with the contribution of O2•- being more significant than 3DOM* and 1O2. These findings shed new light on the understanding the photochemical processes of DOM-HTPW as exogenous DOM and the interconnected fate of contaminants in aquatic environments.

19.
J Colloid Interface Sci ; 657: 880-892, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091911

RESUMO

Covalent post-synthetic modification of metal-organic frameworks (MOFs) represents an underexplored but promising avenue for allowing the addition of specific fluorescent recognition elements to produce the novel MOF-based sensory materials with multiple-analyte detection capability. Here, an excited-state proton transfer (ESPT) active sensor 2D-Zn-NS-P was designed and constructed by covalent post-synthetic incorporation of the excited-state tautomeric 2-hydroxypyridine moiety into the ultrasonically exfoliated amino-tagged 2D Zn-MOF nanosheets (2D-Zn-NS). The water-mediated ESPT process facilitates the highly accessible active sites incorporated on the surface of 2D-Zn-NS-P to specifically respond to the presence of water in common organic solvents via fluorescence turn-on behavior, and accurate quantification of trace amount of water in acetonitrile, acetone and ethanol was established using the as-synthesized nanosheet sensor with the detection sensitivity (<0.01% v/v) superior to the conventional Karl Fischer titration. Upon exposure to Fe3+ or Cr2O72-, the intense blue emission of the aqueous colloidal dispersion of 2D-Zn-NS-P was selectively quenched even in the coexistence of common inorganic interferents. The prohibition of the water-mediated ESPT process and local emission, induced by the coordination of ESPT fluorophore with Fe3+ or by Cr2O72- competitively absorbs the excitation energy, was proposed to responsible for the fluorescence turn-off sensing of the respective analytes. The present study offers the attractive prospect to develop the ESPT-based fluorescent MOF nanosheets by covalent post-synthetic modification strategy as multi-functional sensors for detection of target analytes.

20.
Bioresour Technol ; 412: 131388, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214175

RESUMO

Composting faces challenges with nitrogen (N) losses through ammonia (NH3) and nitrous oxide (N2O) emissions. In this study, wood vinegar (WV) and biochar (BC) were applied individually or combined into wheat straw and chicken manure composting. Results showed that BC and WV reduced NH3 volatilizations by 22-23 % individually, but their combined application achieved a 59 % reduction. However, this combination increased N2O emissions by 174 %. The BC + WV treatment improved compost quality, evidenced by increased total N content by 22 % and enhanced the biological index, promoting additional dissolved organic matter production. Overall, BC and WV applications improved compost quality, reduced gaseous N losses, and supported the re-utilization of agricultural residues. The combined use of BC and WV significantly enhances compost quality and reduces NH3 emissions, offering a promising solution for sustainable agricultural residue management.


Assuntos
Ácido Acético , Amônia , Carvão Vegetal , Compostagem , Óxido Nitroso , Carvão Vegetal/química , Compostagem/métodos , Madeira/química , Esterco , Triticum/química , Galinhas , Animais , Solo/química , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA