Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Anal Bioanal Chem ; 412(28): 7685-7699, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32870351

RESUMO

Pathogen-host cell interactions play an important role in many human infectious and inflammatory diseases. Several pathogens, including Escherichia coli (E. coli), Mycobacterium tuberculosis (M. tb), and even the recent 2019 novel coronavirus (2019-nCoV), can cause serious breathing and brain disorders, tissue injury and inflammation, leading to high rates of mortality and resulting in great loss to human physical and mental health as well as the global economy. These infectious diseases exploit the microbial and host factors to induce serious inflammatory and immunological symptoms. Thus the development of anti-inflammatory drugs targeting bacterial/viral infection is an urgent need. In previous studies, YojI-IFNAR2, YojI-IL10RA, YojI-NRP1,YojI-SIGLEC7, and YojI-MC4R membrane-protein interactions were found to mediate E. coli invasion of the blood-brain barrier (BBB), which activated the downstream anti-inflammatory proteins NACHT, LRR and PYD domains-containing protein 2(NLRP2), using a proteomic chip conjugated with cell immunofluorescence labeling. However, the studies of pathogen (bacteria/virus)-host cell interactions mediated by membrane protein interactions did not extend their principles to broad biomedical applications such as 2019-nCoV infectious disease therapy. The first part of this feature article presents in-depth analysis of the cross-talk of cellular anti-inflammatory transduction signaling among interferon membrane protein receptor II (IFNAR2), interleukin-10 receptor subunit alpha (IL-10RA), NLRP2 and [Ca2+]-dependent phospholipase A2 (PLA2G5), based on experimental results and important published studies, which lays a theoretical foundation for the high-throughput construction of the cytokine and virion solution chip. The paper then moves on to the construction of the novel GPCR recombinant herpes virion chip and virion nano-oscillators for profiling membrane protein functions, which drove the idea of constructing the new recombinant virion and cytokine liquid chips for HTS of leading drugs. Due to the different structural properties of GPCR, IFNAR2, ACE2 and Spike of 2019-nCoV, their ligands will either bind the extracellular domain of IFNAR2/ACE2/Spike or the specific loops of the GPCR on the envelope of the recombinant herpes virions to induce dynamic charge distribution changes that lead to the variable electron transition for detection. Taken together, the combined overview of two of the most innovative and exciting developments in the immunoinflammatory field provides new insight into high-throughput construction of ultrasensitive cytokine and virion liquid chips for HTS of anti-inflammatory drugs or clinical diagnosis and treatment of inflammatory diseases including infectious diseases, acute or chronic inflammation (acute gouty arthritis or rheumatoid arthritis), cardiovascular disease, atheromatosis, diabetes, obesity, tissue injury and tumors. It has significant value in the prevention and treatment of these serious and painful diseases. Graphical abstract.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala/instrumentação , Dispositivos Lab-On-A-Chip , Testes de Sensibilidade Microbiana/instrumentação , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/imunologia , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Citocinas/imunologia , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Bibliotecas de Moléculas Pequenas/farmacologia , Vírion/efeitos dos fármacos , Vírion/imunologia , Viroses/tratamento farmacológico , Viroses/imunologia
2.
Anal Chem ; 90(18): 10958-10966, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30106562

RESUMO

Bacterial meningitis in neonates and infants is an acute lethal disease and occurs in response to microbial exploitation of the blood-brain barrier (BBB), resulting in the intracranial inflammation. Several pathogens, such as Escherichia coli ( E. coli), can cause this devastating disease; however, the underlying molecular mechanisms by which these pathogens exploit the BBB remain incompletely understood. To identify important players on both the pathogen and host sides that govern the E. coli-BBB cell interactions, we took advantage of the E. coli and human proteome microarrays (i.e., HuProt) as an unbiased, proteome-wide tool for identification of important players on both sides. Using the E. coli proteome microarrays, we developed a unique high throughput chip-based cell probing assay to probe with fluorescent live human brain microvascular endothelial cells (HBMEC, which constitute the BBB). We identified several transmembrane proteins, which effectively bound to live HBMEC. We focused on YojI protein for further study. By probing the HuProt arrays with YojI, interferon-alpha receptor (IFNAR2) was identified as one of its binding proteins. The importance of YojI and IFNAR2 involved in E. coli-HBMEC interactions was characterized using the YojI knockout bacteria and IFNAR2-knock down HBMEC and further confirmed by E. coli binding assay in HBMEC. This study represents a new paradigm (dual-microarray technology) that enables rapid, unbiased discovery of both pathogen and host players that are involved in pathogen-host interactions for human infectious diseases in a high throughput manner.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/microbiologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Interações Hospedeiro-Patógeno , Proteômica/instrumentação , Receptor de Interferon alfa e beta/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Linhagem Celular , Desenho de Equipamento , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Humanos , Dispositivos Lab-On-A-Chip
3.
Sensors (Basel) ; 18(9)2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150540

RESUMO

A promoter is a small region of a DNA sequence that responds to various transcription factors, which initiates a particular gene expression. The promoter-engineered biosensor can activate or repress gene expression through a transcription factor recognizing specific molecules, such as polyamine, sugars, lactams, amino acids, organic acids, or a redox molecule; however, there are few reported applications of promoter-enhanced biosensors. This review paper highlights the strategies of construction of promoter gene-engineered biosensors with human and bacteria genetic promoter arrays with regard to high-throughput screening (HTS) molecular drugs, the study of the membrane protein's localization and nucleocytoplasmic shuttling mechanism of regulating factors, enzyme activity, detection of the toxicity of intermediate chemicals, and probing bacteria density to improve value-added product titer. These biosensors' sensitivity and specificity can be further improved by the proposed approaches of Mn2+ and Mg2+ added random e error-prone PCR that is a technique used to generate randomized genomic libraries and site-directed mutagenesis approach, which is applied for the construction of bacteria's "mutant library". This is expected to establish a flexible HTS platform (biosensor array) to large-scale screen transcription factor-acting drugs, reduce the toxicity of intermediate compounds, and construct a gene-dynamic regulatory system in "push and pull" mode, in order to effectively regulate the valuable medicinal product production. These proposed novel promoter-engineered biosensors aiding in synthetic genetic circuit construction will maximize the efficiency of the bio-synthesis of medicinal compounds, which will greatly promote the development of microbial metabolic engineering and biomedical science.


Assuntos
Técnicas Biossensoriais/métodos , Engenharia Genética , Regiões Promotoras Genéticas , Bactérias/genética , Humanos , Engenharia Metabólica , Fatores de Transcrição/metabolismo
4.
Anal Chem ; 85(17): 8046-54, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23941274

RESUMO

To facilitate high-throughput biochemical analyses of membrane proteins, we have developed a novel display technology in a microarray format. Both single-pass (cluster of differentiation 4, CD4) and multiple-pass (G protein-coupled receptor 77, GPR77) human transmembrane proteins were engineered to be displayed in the membrane envelop of herpes simplex virions. These viruses produce large spherical virions displaying multiple copies of envelop proteins. Our aim was to engineer this virus to express these human proteins during the virus productive cycle and incorporate the human proteins into the virion during the assembly process. Another strategy presented includes engineering a fusion of glycoprotein C (gC), a major constituent of herpes simplex virus type 1 (HSV-1) virions, by hijacking the cis-acting signals to direct incorporation of the chimeric protein into the virion. The expression of the human proteins in infected cells, at the cell surface and in purified virions, is in the correct transmembrane orientation, and the proteins are biochemically functional. Purified virions printed on glass slides form a high-density Virion Display (VirD) Array, and the displayed proteins were demonstrated to retain their native conformations and interactions on the VirD Array judging by similar assays, such as antibody staining, as well as lectin and ligand binding. This method can be readily scaled or tailored for different modalities including a high-content, high-throughput platform for screening ligands and drugs of human membrane proteins.


Assuntos
Membrana Celular/genética , Proteínas de Membrana/genética , Vírion/genética , Animais , Membrana Celular/química , Chlorocebus aethiops , Humanos , Masculino , Proteínas de Membrana/análise , Análise Serial de Proteínas/métodos , Células Vero , Vírion/química
5.
Med Hypotheses ; 72(1): 43-4, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18829175

RESUMO

Recently, TDDS (Targeting drug delivery system) plays an important role in enhancing the bioavailability and targeting of anti-tumor drugs. How to transport drugs quickly and precisely to their target sites of action has not been solved fundamentally. A large number of researches have identified artemisinin and its analogs have the merit of precisely targeting to cancer cell, and low side effects to healthy tissue. Thus, if these compounds could be attached to established anti-tumor drugs with probe, a novel targeting anti-tumor drugs will be put into practice in the future. The novel drugs delivery system will be a powerful weapon against cancer disease for their unique targeting.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/efeitos adversos , Disponibilidade Biológica , Desenho de Fármacos , Humanos , Neoplasias/tratamento farmacológico
6.
Future Microbiol ; 13: 37-58, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227212

RESUMO

AIM: To screen host proteins that interact with enterohemorrhagic Escherichia coli O157:H7 EspF. MATERIALS & METHODS: Flow cytometry and high-throughput sequencing were used to screen interacting proteins. Molecular function, biological processes and Kyoto Encyclopedia of Genes and Genomes pathways were studied using the DAVID online tool. Glutathione S-transferase pull down and dot blotting were used to verify the interactions. RESULTS: 293 host proteins were identified to associate with EspF. They were mainly enriched in RNA splicing (p = 0.005), ribosome structure (p = 0.012), and involved in 109 types of signaling pathways. SNX9 and ANXA6 were confirmed to interact with EspF. CONCLUSION: EspF interacts with ANXA6; they may form a complex to manipulate the process of phagocytosis; EspF plays a highlighted pathogenic role in enterohemorrhagic E. coli infection process.


Assuntos
Proteínas de Transporte/metabolismo , Infecções por Escherichia coli/metabolismo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Anexinas/genética , Anexinas/metabolismo , Proteínas de Transporte/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/química , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligação Proteica , Mapeamento de Interação de Proteínas , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
7.
Mini Rev Med Chem ; 16(10): 846-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25963567

RESUMO

How to construct protein chips and chemically labeling drug molecules without disrupting structures for HTS is still a challenging area. There are two main obstacles, one is that human multitrans membrane receptors, which are major drug targets, exhibit distinct motifs, and fold structures, and they will collapse unfold without membrane support in vitro; another one is that there still lack effective chemical labeling method for small drugs for detection. Therefore, how to acquire high detecting sensitivity for small molecules and to immobilize membrane protein receptors in native conformation with uniform direction on the chip, need to be solved for drug HTS. This paper reviews drug HTS trends in recent years, proposed a new virion-chip model and a feasible C-H activation method for CY-5 labeling drugs. It is expected to provide a good platform for future drug HTS.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Análise Serial de Proteínas/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Análise Serial de Proteínas/instrumentação , Bibliotecas de Moléculas Pequenas/química
8.
Med Hypotheses ; 80(4): 380-2, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23374423

RESUMO

Disruption of normal cell function by chemicals, UV radiation or viruses can cause various cancer. Drugs that have been developed for cancer therapy bind to various targets to correct disorder cell behavior, repair damaged DNA or promote cell apoptosis. However, there is rare study that focuses on cancer cell membrane as target. We propose two approaches for achieving our goal. One is to use phospholipase A2 (PLA2) to cleave phospholipid heads of the bilayer of cancer cells. Because PLA2 has unique Ca(2+) catalytic site and the pH of healthy tissue cells should be slightly alkaline at 7.2-7.5, it can be easily protected by CO3(2-) in the form of PLA2-CaCO3. While PLA2-CaCO3 accumulate in cancer cells in the acidic microenvironment of which the pH is below 7, it could be converted to active state (PLA2-Ca(2+)) which can intensively damage the cancer cell membrane. The other one is to use both monoclonal antibodies and dimethylsulfoxide (DMSO). The internalization of targeted cancer cell antibodies could change the curvature of cell membrane from order state to disorder state, therefore strong detergent DMSO can destroy cancer cells at extreme low concentration. These two approaches present no harm for normal cells, therefore, drugs targeted cancer cell membrane might become a new and high effective clinical cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Fracionamento Celular/métodos , Membrana Celular/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Humanos
9.
Colloids Surf B Biointerfaces ; 70(2): 243-7, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19185470

RESUMO

Adhesive proteins secreted by the marine mussel could bind strongly to all kinds of surfaces, for instance, ship hulls and petroleum pipelines. Studies indicated that there was an unusual amino acid 3,4-dihydroxy-l-phenylanine (dopa), which was the crucial super adhesive unit in the proteins. The technology of electrolyzing seawater was employed to generate HOCl solution to hinder the adhesion. However, the detailed anti-fouling mechanism of HOCl solution remained unknown to be fully explained. Herein, we theoretically reported a study of single molecular (dopa) reaction under the HOCl solution environment, which would be helpful to reveal the anti-fouling mechanism through electrolyzing seawater. By using the density functional theory (DFT) quantum mechanics procedure, we theoretically studied the reaction mechanism of the adhesive unit dopa in mussel with electrolyzing seawater. Two possible pathways (1 and 2) were obtained (Fig. 6). The transition state for each pathway was determined, the intrinsic reaction coordinate (IRC) was analyzed and the mechanism had been confirmed. The calculations indicated dopa tended to have electrophonic attacking substitution reaction to generate 3-chlorine-4,5-dihydroxyphenylalanine (dopa-Cl) with different pathways, which hindered the formulation of conjuncted dopa-dopa and thus the stickiness among mussel adhesive proteins reduced. The transition states computation showed that pathway (1) had one transition state (TS1-1) with an activation energy of 102.22 kJ mol(-1), while pathway (2) had two transition states (TS2-1, TS2-2) with activation energies of 191.98 kJ mol(-1) and 42.00 kJ mol(-1) respectively and one intermediate (IM2-1). Rate constant value of pathway (1) was much bigger than that of pathway (2) regardless of high or low temperature, which meant that in the reaction process, pathway (1) was the favorable reaction step; but as the temperature rose, the competitiveness of pathway (2) gradually increased. After the theoretical calculation, we found that it was Cl(+) played an important and direct role in the dopa's modification.


Assuntos
Di-Hidroxifenilalanina/química , Água do Mar/química , Animais , Bivalves , Eletroquímica/métodos , Cinética , Modelos Químicos , Conformação Molecular , Estrutura Molecular , Proteínas/química , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA