Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 27(Pt 5): 1430-1437, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876620

RESUMO

Measurement modalities in Bragg coherent diffraction imaging (BCDI) rely on finding a signal from a single nanoscale crystal object which satisfies the Bragg condition among a large number of arbitrarily oriented nanocrystals. However, even when the signal from a single Bragg reflection with (hkl) Miller indices is found, the crystallographic axes on the retrieved three-dimensional (3D) image of the crystal remain unknown, and thus localizing in reciprocal space other Bragg reflections becomes time-consuming or requires good knowledge of the orientation of the crystal. Here, the commissioning of a movable double-bounce Si (111) monochromator at the 34-ID-C endstation of the Advanced Photon Source is reported, which aims at delivering multi-reflection BCDI as a standard tool in a single beamline instrument. The new instrument enables, through rapid switching from monochromatic to broadband (pink) beam, the use of Laue diffraction to determine crystal orientation. With a proper orientation matrix determined for the lattice, one can measure coherent diffraction patterns near multiple Bragg peaks, thus providing sufficient information to image the full strain tensor in 3D. The design, concept of operation, the developed procedures for indexing Laue patterns, and automated measuring of Bragg coherent diffraction data from multiple reflections of the same nanocrystal are discussed.

2.
Phys Rev E ; 109(1-2): 015002, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366536

RESUMO

Theoretical analysis of Richtmyer-Meshkov instability (RMI) experiments for solid strength shows that the strain rate for a given shock should be inversely proportional to the length scale of the sine wave perturbations when η_{0}k, the nondimensional amplitude to wavelength ratio, is held fixed. To isolate the effect of strain rate on strength, free-surface RMI specimens of annealed copper were prepared with three perturbation regions with the same η_{0}k but different length scales, characterized by the wavelength λ varying by a factor of 4.9 from 65 to 130 to 320µm. Three such targets with different fixed η_{0}k^{'}s were impacted to a shock pressure of 25 GPa, and the instability evolution was measured with photon Doppler velocimetry. Strengths estimated by comparing hydrocode simulation to the data increased from 700 to 1200 MPa as λ decreased. The different η_{0}k targets exercised increasing amounts of plastic strain yet showed no evidence of strain hardening. Physical regime sensitivity analysis determined that for 320-65µm wavelength perturbations, the effective strain rates increased from 8.7×10^{6} to 3.3×10^{7}s^{-1}, a factor of 3.8. Thus, the predicted strain rate scaling was mostly achieved but slightly suppressed by increased strength at higher rates. The RMI strength estimates were plotted against constitutive testing data on copper from the literature to show striking evidence of the strength upturn at higher strain rates.

3.
Sci Rep ; 14(1): 20911, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245781

RESUMO

A dislocation-density based crystalline plasticity (DCP) and nonlinear finite element (FE) analysis were used to predict, and fundamentally understand how and why fracture nucleation and propagation are related to the interrelated microstructural mechanisms of dislocation-density pileups, GB structure, orientation, and total and partial dislocation density interactions within and adjacent for a random low angle grain boundary (LAGB) and a random high angle GB (HAGB). The GB orientations and structures were obtained from micropillar experiments, such that LAGBs and the HAGBs can be accurately represented and used for the modeling predictions. The normal stress, density of pileups, and dislocation-density accumulation along and within the GB were higher for the low angle GB bicrystal. These interrelated phenomena delineate how fracture for high angle GBs nucleate and propagate at lower nominal strains than the lower angle GB bicrystal case. These predictions underscore how fundamental mechanisms can be identified and used to understand how failure nucleates and propagates for different GB structures and orientations.

4.
Materials (Basel) ; 16(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37297153

RESUMO

We discuss the theoretical solution to the differential equations governing accelerating edge dislocations in anisotropic crystals. This is an important prerequisite to understanding high-speed dislocation motion, including an open question about the existence of transonic dislocation speeds, and subsequently high-rate plastic deformation in metals and other crystals.

5.
Sci Adv ; 9(45): eadi2606, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948528

RESUMO

Accurate modeling and prediction of damage induced by dynamic loading in materials have long proved to be a difficult task. Examination of postmortem recovered samples cannot capture the time-dependent evolution of void nucleation and growth, and attempts at analytical models are hindered by the necessity to make simplifying assumptions, because of the lack of high-resolution, in situ, time-resolved experimental data. We use absorption contrast imaging to directly image the time evolution of spall damage in metals at ∼1.6-µm spatial resolution. We observe a dependence of void distribution and size on time and microstructure. The insights gained from these data can be used to validate and improve dynamic damage prediction models, which have the potential to lead to the design of superior damage-resistant materials.

6.
Nat Commun ; 12(1): 1257, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623036

RESUMO

Machine learning, trained on quantum mechanics (QM) calculations, is a powerful tool for modeling potential energy surfaces. A critical factor is the quality and diversity of the training dataset. Here we present a highly automated approach to dataset construction and demonstrate the method by building a potential for elemental aluminum (ANI-Al). In our active learning scheme, the ML potential under development is used to drive non-equilibrium molecular dynamics simulations with time-varying applied temperatures. Whenever a configuration is reached for which the ML uncertainty is large, new QM data is collected. The ML model is periodically retrained on all available QM data. The final ANI-Al potential makes very accurate predictions of radial distribution function in melt, liquid-solid coexistence curve, and crystal properties such as defect energies and barriers. We perform a 1.3M atom shock simulation and show that ANI-Al force predictions shine in their agreement with new reference DFT calculations.

7.
Materials (Basel) ; 13(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168848

RESUMO

The effect of helium (He) concentration on ejecta production in OFHC-Copper was investigated using Richtmyer-Meshkov Instability (RMI) experiments. The experiments involved complex samples with periodic surface perturbations machined onto the surface. Each of the four target was implanted with a unique helium concentration that varied from 0 to 4000 appm. The perturbation's wavelengths were λ ≈ 65 µ m, and their amplitudes h 0 were varied to determine the wavenumber ( 2 π / λ ) amplitude product k h 0 at which ejecta production beganfor Cu with and without He. The velocity and mass of the ejecta produced was quantified using Photon Doppler Velocimetry (PDV) and Lithium-Niobate (LN) pins, respectively. Our results show that there was an increase of 30% in the velocity at which the ejecta cloud was traveling in Copper with 4000 appm as compared to its unimplanted counterpart. Our work also shows that there was a finer cloud of ejecta particles that was not detected by the PDV probes but was detected by the early arrival of a "signal" at the LN pins. While the LN pins were not able to successfully quantify the mass produced due to it being in the solid state, they did provide information on timing. Our results show that ejecta was produced for a longer time in the 4000 appm copper.

8.
Materials (Basel) ; 13(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050520

RESUMO

The use of ultrafine and nanocrystalline materials is a proposed pathway to mitigate irradiation damage in nuclear fusion components. Here, we examine the radiation tolerance of helium bubble formation in 85 nm (average grain size) nanocrystalline-equiaxed-grained tungsten and an ultrafine tungsten-TiC alloy under extreme low energy helium implantation at 1223 K via in-situ transmission electron microscope (TEM). Helium bubble damage evolution in terms of number density, size, and total volume contribution to grain matrices has been determined as a function of He+ implantation fluence. The outputs were compared to previously published results on severe plastically deformed (SPD) tungsten implanted under the same conditions. Large helium bubbles were formed on the grain boundaries and helium bubble damage evolution profiles are shown to differ among the different materials with less overall damage in the nanocrystalline tungsten. Compared to previous works, the results in this work indicate that the nanocrystalline tungsten should possess a fuzz formation threshold more than one order of magnitude higher than coarse-grained tungsten.

9.
Phys Rev E ; 100(5-1): 053002, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31869927

RESUMO

Recently, Richtmyer-Meshkov instability (RMI) experiments driven by high explosives and fielded with perturbations on a free surface have been used to study strength at extreme strain rates and near zero pressure. The RMI experiments reported here used impact loading, which is experimentally simpler, more accurate to analyze, and which also allows the exploration of a wider range of conditions. Three experiments were performed on tantalum at shock stresses from 20 to 34 GPa, with six different perturbation sizes at each shock level, making this the most comprehensive set of strength-focused RMI experiments reported to date on any material. The resulting estimated average strengths of 1200-1400 MPa at strain rates of 10^{7}/s exceeded, by 40% or more, a common power law extrapolation from data at strain rates below 10^{4}/s. Taken together with other data in the literature that show much higher strength at simultaneous high rates and high pressure, these RMI data isolated effects and indicated that, in the range of conditions examined, the pressure effects are more significant than rate effects.

10.
Nat Commun ; 9(1): 3776, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224669

RESUMO

The nucleation and propagation of dislocations is an ubiquitous process that accompanies the plastic deformation of materials. Consequently, following the first visualization of dislocations over 50 years ago with the advent of the first transmission electron microscopes, significant effort has been invested in tailoring material response through defect engineering and control. To accomplish this more effectively, the ability to identify and characterize defect structure and strain following external stimulus is vital. Here, using X-ray Bragg coherent diffraction imaging, we describe the first direct 3D X-ray imaging of the strain field surrounding a line defect within a grain of free-standing nanocrystalline material following tensile loading. By integrating the observed 3D structure into an atomistic model, we show that the measured strain field corresponds to a screw dislocation.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 1): 031601, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20365741

RESUMO

We describe a molecular-dynamics framework for the direct calculation of the short-ranged structural forces underlying grain-boundary premelting and grain coalescence in solidification. The method is applied in a comparative study of (i) a Sigma9115120 degrees twist and (ii) a Sigma9110{411} symmetric tilt boundary in a classical embedded-atom model of elemental Ni. Although both boundaries feature highly disordered structures near the melting point, the nature of the temperature dependence of the width of the disordered regions in these boundaries is qualitatively different. The former boundary displays behavior consistent with a logarithmically diverging premelted layer thickness as the melting temperature is approached from below, while the latter displays behavior featuring a finite grain-boundary width at the melting point. It is demonstrated that both types of behavior can be quantitatively described within a sharp-interface thermodynamic formalism involving a width-dependent interfacial free energy, referred to as the disjoining potential. The disjoining potential for boundary (i) is calculated to display a monotonic exponential dependence on width, while that of boundary (ii) features a weak attractive minimum. The results of this work are discussed in relation to recent simulation and theoretical studies of the thermodynamic forces underlying grain-boundary premelting.


Assuntos
Modelos Químicos , Níquel/química , Simulação por Computador , Transição de Fase , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA