RESUMO
RESEARCH QUESTION: In a randomized, triple-blind, placebo-controlled clinical trial (RCT), we investigated the effect of astaxanthin (AST) on pro-inflammatory cytokines, oxidative stress (OS) markers, and assisted reproductive technology (ART) outcomes in 44 infertile Polycystic Ovary Syndrome (PCOS) patients. DESIGN: Patients with PCOS were randomly divided into two groups. The intervention group received 6 mg AST, and the control group received placebo daily for 8 weeks. Blood samples were obtained from all patients before and after intervention and follicular fluid (FF) was collected during the ART procedure. Interleukin (IL) -6, IL-1ß were evaluated from serum samples and FF and OS markers (malondialdehyde [MDA], catalase [CAT], superoxide dismutase [SOD], and reactive oxygen species [ROS]) were measured from FF. The groups were compared for ART outcomes as well. RESULTS: A significant decrease in IL-6 and IL-1ß concentrations (both, P = < 0.01) serum levels was found following AST treatment. FF cytokine levels and OS markers did not differ significantly between the groups. Reproductive outcomes, including the number of oocytes retrieved (P = 0.01), the MII oocyte count (P = 0.007), oocyte maturity rate (MII %) (P = 0.02) and number of frozen embryos (P = 0.03) significantly improved after intervention. No significant differences were found in chemical, clinical and multiple pregnancies between the groups. CONCLUSIONS: AST pretreatment may modify inflammation and improve ART outcomes in PCOS infertile patients. Further investigations are recommended to verify these findings.
Assuntos
Citocinas , Líquido Folicular , Infertilidade Feminina , Estresse Oxidativo , Síndrome do Ovário Policístico , Técnicas de Reprodução Assistida , Xantofilas , Humanos , Feminino , Síndrome do Ovário Policístico/tratamento farmacológico , Xantofilas/farmacologia , Xantofilas/administração & dosagem , Adulto , Citocinas/metabolismo , Gravidez , Infertilidade Feminina/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Líquido Folicular/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/sangue , Resultado do TratamentoRESUMO
BACKGROUND: This study was designed to examine the effect of resveratrol on mitochondrial biogenesis, oxidative stress (OS), and assisted reproductive technology (ART) outcomes in individuals with polycystic ovary syndrome (PCOS). METHODS: Fifty-six patients with PCOS were randomly assigned to receive 800 mg/day of resveratrol or placebo for 60 days. The primary outcome was OS in follicular fluid (FF). The secondary outcome involved assessing gene and protein expression related to mitochondrial biogenesis, mitochondrial DNA (mtDNA) copy number, and adenosine triphosphate (ATP) content in granulosa cells (GCs). ART outcomes were evaluated at the end of the trial. RESULTS: Resveratrol significantly reduced the total oxidant status (TOS) and oxidative stress index (OSI) in FF (P = 0.0142 and P = 0.0039, respectively) while increasing the total antioxidant capacity (TAC) (P < 0.0009). Resveratrol consumption also led to significant increases in the expression of critical genes involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and mitochondrial transcription factor A (TFAM) (P = 0.0032 and P = 0.0003, respectively). However, the effect on nuclear respiratory factor 1 (Nrf-1) expression was not statistically significant (P = 0.0611). Resveratrol significantly affected sirtuin1 (SIRT1) and PGC-1α protein levels (P < 0.0001 and P = 0.0036, respectively). Resveratrol treatment improved the mtDNA copy number (P < 0.0001) and ATP content in GCs (P = 0.0014). Clinically, the resveratrol group exhibited higher rates of oocyte maturity (P = 0.0012) and high-quality embryos (P = 0.0013) than did the placebo group. There were no significant differences between the groups in terms of chemical or clinical pregnancy rates (P > 0.05). CONCLUSIONS: These findings indicate that resveratrol may be a promising therapeutic agent for patients with PCOS undergoing assisted reproduction. TRIAL REGISTRATION NUMBER: http://www.irct.ir ; IRCT20221106056417N1; 2023 February 09.
Assuntos
Biogênese de Organelas , Síndrome do Ovário Policístico , Técnicas de Reprodução Assistida , Resveratrol , Humanos , Feminino , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Adulto , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , DNA Mitocondrial/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismoRESUMO
Multiple sclerosis (MS) is presented as the most common autoimmune and demyelinating neurological disorder with incapacitating complications and with no definite therapy. Most treatments for MS mainly focus on attenuation of its severity and recurrence. To model MS reliably to study pathogenesis and efficacy of possible chemicals, experimental autoimmune encephalomyelitis (EAE) condition is induced in rodents. Ellagic acid is a neuroprotective polyphenol that can protect against demyelination. This study was planned and conducted to assess its possible beneficial effect in MOG-induced EAE model of MS with emphasis on uncovering its modes of action. Ellagic acid was given p.o. (at doses of 10 or 50 mg/kg/day) after development of clinical signs of MS to C57BL/6 mice immunized with MOG35-55. Results showed that ellagic acid can ameliorate severity of the disease and partially restore tissue level of TNFα, IL-6, IL-17A and IL-10. Besides, ellagic acid lowered tissue levels of NLRP3 and caspase 1 in addition to its mitigation of neuroinflammation, demyelination and axonal damage in spinal cord specimens of EAE group. As well, ellagic acid treatment prevented reduction of MBP and decreased GFAP and Iba1 immunoreactivity. Taken together, ellagic acid can decrease severity of EAE via amelioration of astrogliosis, astrocyte activation, demyelination, neuroinflammation and axonal damage that is partly related to its effects on NLRP3 inflammasome and pyroptotic pathway.