Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(43): 18637-18644, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33058663

RESUMO

A more robust mechanistic understanding of imine-linked two-dimensional covalent organic frameworks (2D COFs) is needed to improve their crystalline domain sizes and to control their morphology, both of which are necessary to fully realize their application potential. Here, we present evidence that 2D imine-linked COFs rapidly polymerize as crystalline sheets that subsequently reorganize to form stacked structures. Primarily, this study focuses on the first few minutes of 1,3,5-tris(4-aminophenyl)benzene and terephthaldehyde polymerization, which yields an imine-linked 2D COF. In situ X-ray diffraction and thorough characterization of solids obtained using gentler isolation and activation methods than have typically been used in the literature indicate that periodic imine-linked 2D structures form within 60 s, which then form more ordered stacked structures over the course of several hours. This stacking process imparts improved stability toward the isolation process relative to that of the early stage materials, which likely obfuscated previous mechanistic conclusions regarding 2D polymerization that were based on products isolated using harsh activation methods. This revised mechanistic picture has useful implications; the 2D COF layers isolated at very short reaction times are easily exfoliated, as observed in this work using high-resolution transmission electron microscopy and atomic force microscopy. These results suggest improved control of imine-linked 2D COF formation can be obtained through manipulation of the polymerization conditions and interlayer interactions. Qualitatively similar results were obtained for analogous materials obtained from 2,5-di(alkoxy)terephthaldehyde derivatives, except for the COF with the longest alkoxy chains examined (OC12H25), which, although shown by in situ X-ray diffraction to be highly crystalline in the reaction mixture, is much less crystalline when isolated than the other COFs examined, likely due to the more severe steric impact of the dodecyloxy functionality on the stacking process.

2.
J Am Chem Soc ; 142(2): 783-791, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31894972

RESUMO

Here we report that a covalent organic framework (COF), which contains 2,5-di(imine)-substituted 1,4-dihydroxybenzene (diiminol) moieties, undergoes color changes in the presence of solvents or solvent vapor that are rapid, passive, reversible, and easily detectable by the naked eye. A new visible absorption band appears in the presence of polar solvents, especially water, suggesting reversible conversion to another species. This reversibility is attributed to the ability of the diiminol to rapidly tautomerize to an iminol/cis-ketoenamine and its inability to doubly tautomerize to a diketoenamine. Density functional theory (DFT) calculations suggest similar energies for the two tautomers in the presence of water, but the diiminol is much more stable in its absence. Time-dependent DFT calculations confirm that the iminol/cis-ketoenamine absorbs at longer wavelength than the diiminol and indicate that this absorption has significant charge-transfer character. A colorimetric humidity sensing device constructed from an oriented thin film of the COF responded quickly to water vapor and was stable for months. These results suggest that tautomerization-induced electronic structure changes can be exploited in COF platforms to give rapid, reversible sensing in systems that exhibit long-term stability.

3.
J Am Chem Soc ; 139(14): 4999-5002, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28345908

RESUMO

Imine-linked two-dimensional covalent organic frameworks (2D COFs) are crystalline polymer networks with enhanced stability compared to boronate ester-linked systems and with broad monomer scope. They are traditionally prepared by condensing polyfunctional aldehydes and amines at elevated temperature in a mixture of organic solvents and aqueous CH3CO2H, which catalyzes imine formation and exchange. Here we employ metal triflates, which are water-tolerant Lewis acids, to accelerate 2D imine-linked COF synthesis and improve their materials quality. Low catalyst loadings provide crystalline polymer networks in nearly quantitative yields. These conditions are demonstrated for several COFs, including heteroatom-containing systems of interest for optoelectronic applications.

4.
Adv Mater ; 32(2): e1905776, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31763734

RESUMO

Imine-linked 2D covalent organic frameworks (COFs) form more rapidly than previously reported under Brønsted acid-catalyzed conditions, showing signs of crystallinity within a few minutes, and maximum crystallinity within hours. These observations contrast with the multiday reaction times typically employed under these conditions. In addition, vacuum activation, which is often used to isolate COF materials significantly erodes the crystallinity and surface area of the several isolated materials, as measured by N2 sorption and X-ray diffraction. This loss of material quality during isolation for many networks has historically obscured otherwise effective polymerization conditions. The influence of the activation procedure is characterized in detail for three COFs, with the commonly used 1,3,5-tris(4-aminophenyl)benzene-terephthaldehyde network (TAPB-PDA COF), the most prone to pore collapse. When the networks are activated carefully, rapid COF formation is general for all five of the imine-linked 2D COFs studied, with all exhibiting excellent crystallinity and surface areas, including the highest surface areas reported to date for three materials. Furthermore, to simplify the workup of COF materials, a simple nitrogen flow method provides high-quality materials without the need for specialized equipment. These insights have important implications for studying and understanding how 2D COFs form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA