Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Biol Cell ; 110(1): 6-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28980327

RESUMO

Neural stem cell (NSC) activity and adult neurogenesis are physiologically relevant regulators of adult brain structure, function and repair. Given these roles, the NSC impairments observed in a wide range of neurodegenerative and psychiatric conditions likely factor into the overall cognitive dysfunction in these conditions. We investigated NSC regulation in the context of Alzheimer's disease (AD) using the well-characterised triple transgenic (3xTg) model of AD. In this review, we describe our recent findings that link 3xTg-AD neurogenesis impairments to AD-associated abnormalities in brain fatty acid metabolism. Notably, we identified an accumulation of triglycerides rich in oleic acid, a mono-unsaturated fatty acid, within the forebrain NSC niche in AD. Inhibiting the local conversion of saturated to mono-unsaturated fatty acids within the brain was sufficient to counteract the loss of NSC activity in 3xTg-AD mice (Hamilton et al., 2015). We place these findings within the context of recent evidence that dynamic changes in lipid metabolism occur during the transition from NSC quiescence to activation. The picture that emerges is that the critical NSC quiescence-to-activation decision is sensitive to the local levels of specific fatty acids and can be impaired by a disease-associated shift in brain fatty acid balance.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Ácidos Graxos/metabolismo , Células-Tronco Neurais/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Ácidos Graxos/análise , Humanos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Neurogênese , Ácido Oleico/análise , Ácido Oleico/metabolismo
2.
Exp Cell Res ; 368(1): 84-100, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29689278

RESUMO

Development of the spinal cord requires dynamic and tightly controlled expression of numerous transcription factors. Forkhead Box protein J1 (FoxJ1) is a transcription factor involved in ciliogenesis and is specifically expressed in ependymal cells (ECs) in the adult central nervous system. However, using FoxJ1 fate-mapping mouse lines, we observed that FoxJ1 is also transiently expressed by the progenitors of other neural subtypes during development. Moreover, using a knock-in mouse line, we discovered that FoxJ1 is essential for embryonic progenitors to follow a normal developmental trajectory. FoxJ1 loss perturbed embryonic progenitor proliferation and cell fate determination, and resulted in formation of adult ECs having impaired stem cell potential and an inability to respond to spinal cord injury in both male and female animals. Thus, our study uncovers unexpected developmental functions of FoxJ1 in cell fate determination of subsets of neural cells and suggests that FoxJ1 is critical for maintaining the stem cell potential of ECs into adulthood.


Assuntos
Diferenciação Celular/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/genética , Células-Tronco/citologia , Animais , Epêndima/metabolismo , Feminino , Masculino , Camundongos , Organogênese/fisiologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
3.
Glia ; 63(8): 1469-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25921491

RESUMO

Stroke and spinal cord injury (SCI) are among the most frequent causes of central nervous system (CNS) dysfunction, affecting millions of people worldwide each year. The personal and financial costs for affected individuals, their families, and the broader communities are enormous. Although the mammalian CNS exhibits little spontaneous regeneration and self-repair, recent discoveries have revealed that subpopulations of glial cells in the adult forebrain subventricular zone and the spinal cord ependymal zone possess neural stem cell properties. These endogenous neural stem cells react to stroke and SCI by contributing a significant number of new neural cells to formation of the glial scar. These findings have raised hopes that new therapeutic strategies can be designed based on appropriate modulation of endogenous neural stem cell responses to CNS injury. Here, we review the responses of forebrain and spinal cord neural stem cells to stroke and SCI, the role of these responses in restricting injury-induced tissue loss, and the possibility of directing these responses to promote anatomical and functional repair of the CNS.


Assuntos
Isquemia Encefálica/fisiopatologia , Células-Tronco Neurais/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Isquemia Encefálica/terapia , Epêndima/fisiopatologia , Humanos , Traumatismos da Medula Espinal/terapia , Nicho de Células-Tronco/fisiologia , Acidente Vascular Cerebral/terapia
4.
Sci Rep ; 14(1): 7742, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565895

RESUMO

Evidence from genetic and epidemiological studies point to lipid metabolism defects in both the brain and periphery being at the core of Alzheimer's disease (AD) pathogenesis. Previously, we reported that central inhibition of the rate-limiting enzyme in monounsaturated fatty acid synthesis, stearoyl-CoA desaturase (SCD), improves brain structure and function in the 3xTg mouse model of AD (3xTg-AD). Here, we tested whether these beneficial central effects involve recovery of peripheral metabolic defects, such as fat accumulation and glucose and insulin handling. As early as 3 months of age, 3xTg-AD mice exhibited peripheral phenotypes including increased body weight and visceral and subcutaneous white adipose tissue as well as diabetic-like peripheral gluco-regulatory abnormalities. We found that intracerebral infusion of an SCD inhibitor that normalizes brain fatty acid desaturation, synapse loss and learning and memory deficits in middle-aged memory-impaired 3xTg-AD mice did not affect these peripheral phenotypes. This suggests that the beneficial effects of central SCD inhibition on cognitive function are not mediated by recovery of peripheral metabolic abnormalities. Given the widespread side-effects of systemically administered SCD inhibitors, these data suggest that selective inhibition of SCD in the brain may represent a clinically safer and more effective strategy for AD.


Assuntos
Doença de Alzheimer , Estearoil-CoA Dessaturase , Camundongos , Animais , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Metabolismo dos Lipídeos/fisiologia , Lipogênese , Modelos Animais de Doenças , Camundongos Transgênicos
5.
J Neurosci ; 32(43): 15012-26, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23100423

RESUMO

Adult forebrain neurogenesis is dynamically regulated. Multiple families of niche-derived cues have been implicated in this regulation, but the precise roles of key intracellular signaling pathways remain vaguely defined. Here, we show that mammalian target of rapamycin (mTOR) signaling is pivotal in determining proliferation versus quiescence in the adult forebrain neural stem cell (NSC) niche. Within this niche, mTOR complex-1 (mTORC1) activation displays stage specificity, occurring in transiently amplifying (TA) progenitor cells but not in GFAP+ stem cells. Inhibiting mTORC1 depletes the TA progenitor pool in vivo and suppresses epidermal growth factor (EGF)-induced proliferation within neurosphere cultures. Interestingly, mTORC1 inhibition induces a quiescence-like phenotype that is reversible. Likewise, mTORC1 activity and progenitor proliferation decline within the quiescent NSC niche of the aging brain, while EGF administration reactivates the quiescent niche in an mTORC1-dependent manner. These findings establish fundamental links between mTOR signaling, proliferation, and aging-associated quiescence in the adult forebrain NSC niche.


Assuntos
Envelhecimento , Diferenciação Celular/fisiologia , Células-Tronco Neurais/fisiologia , Prosencéfalo/citologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Proteínas do Domínio Duplacortina , Embrião de Mamíferos , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Glial Fibrilar Ácida/genética , Proteínas de Fluorescência Verde/genética , Humanos , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microdissecção , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neuropeptídeos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Gravidez , Proteína S6 Ribossômica/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/metabolismo , Serina-Treonina Quinases TOR/genética , Transfecção , Tubulina (Proteína)/metabolismo
6.
J Cell Physiol ; 228(9): 1844-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23459851

RESUMO

The rodent heart contains a population of nestin((+)) cells derived from the embryonic neural crest and migrate to the scar after myocardial infarction (MI). The present study tested the hypothesis that intron 2 of the nestin gene drives expression and a subpopulation of nestin((+)) cells participate in reparative vascularisation. The directed expression of the green fluorescent protein (GFP) by the second intron of the nestin gene identified GFP/nestin((+)) cells intercalated among ventricular myocytes in the heart of normal transgenic mice. Ischemic injury led to the migration of GFP((+)) cells to the scar and a subpopulation was detected in CD31/nestin((+)) endothelial cells of newly formed blood vessels. The direct contribution to reparative vascularisation provided the impetus to test the hypothesis that increasing the population of nestin((+)) cells in the infarcted heart will improve scar healing. Skin-derived cells isolated from E18 Sprague-Dawley rats grew as spheres, expressed nestin, sox2, neural crest-related transcriptional genes and a panel of peptide growth factors. Skin-derived cells transplanted in the non-infarcted left ventricle of 3-day post-MI rats migrated to the peri-infarct/infarct region and remained engrafted for 21 days. A significantly smaller infarct, increased number of small calibre blood vessels and improved ventricular function were observed in engrafted infarcted rat hearts. Thus, the second intron of the nestin gene drives expression in the mouse heart and a subpopulation of GFP/nestin((+)) cells directly participate in reparative vascularisation. Increasing the population of nestin((+)) cells via the transplantation of skin-derived cells represents a potential approach to limit ischemic damage to the heart.


Assuntos
Proteínas de Filamentos Intermediários/genética , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica/genética , Proteínas do Tecido Nervoso/genética , Crista Neural/crescimento & desenvolvimento , Animais , Diferenciação Celular , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Nestina , Crista Neural/citologia , Crista Neural/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/citologia , Células-Tronco/metabolismo
7.
Eur J Neurosci ; 37(12): 1978-86, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23773067

RESUMO

In the brains of adult vertebrates, including humans, neurogenesis occurs in restricted niches where it maintains cellular turnover and cognitive plasticity. In virtually all species, however, aging is associated with a significant decline in adult neurogenesis. Moreover, an acceleration of neurogenic defects is observed in models of Alzheimer's disease and other neurodegenerative diseases, suggesting an involvement in aging- and disease-associated cognitive deficits. To gain insights into when, how and why adult neurogenesis decreases in the aging brain, we critically reviewed the scientific literature on aging of the rodent subventricular zone, the neurogenic niche of the adult forebrain. Our analysis revealed that deficits in the neurogenic pathway are largely established by middle age, but that there remains striking ambiguity in the underlying mechanisms, especially at the level of stem and progenitor cells. We identify and discuss several challenging issues that have contributed to these key gaps in our current knowledge. In the future, addressing these issues should help untangle the interactions between neurogenesis, aging and aging-associated diseases.


Assuntos
Envelhecimento/fisiologia , Ventrículos Laterais/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Prosencéfalo/citologia , Doença de Alzheimer/patologia , Animais , Camundongos , Ratos
8.
Genes Chromosomes Cancer ; 51(8): 792-804, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22514116

RESUMO

Neuroblastoma (NB) is the most common and lethal extracranial solid tumor of childhood. Despite aggressive therapy, more than half of the children with advanced NB will die of uncontrolled metastatic disease. After chemotherapy, tumor-initiating cells (TICs) could persist, cause relapses and metastasis. The aim of this study is to demonstrate the tumor-initiating properties of CD133high NB cells and to identify new specific genetic abnormalities. Isolation of the CD133high cell population from NB cell lines was followed by neurosphere formation, soft agar assays, and orthotopic injections in NOD/SCID/IL2Rγc-null mice. A differential genotyping analysis was performed with Affymetrix SNP 6.0 arrays on CD133low and CD133high populations and the frequency of the abnormalities of 36 NB tumors was determined. Our results show that CD133high NB cells possess tumor-initiating properties, as CD133high cells formed significantly more neurospheres and produced significantly more colonies in soft agar than CD133low. Injection of 500 CD133high cells was sufficient to generate primary tumors and frequent metastases in mice. Differential genotyping analysis demonstrated two common regions with gains (16p13.3 and 19p13.3) including the gene EFNA2 in the CD133high population, and two with loss of heterozygosity (16q12.1 and 21q21.3) in the CD133low population. The gain of EFNA2 correlated with increased expression of the corresponding protein. These abnormalities were found in NB samples and some were significantly correlated with CD133 expression. Our results show that CD133high NB cells have TICs properties and present different genotyping characteristics compared to CD133low cells. Our findings reveal insights into new therapeutic targets in NB TICs.


Assuntos
Antígenos CD/genética , Glicoproteínas/genética , Neuroblastoma/genética , Peptídeos/genética , Antígeno AC133 , Neoplasias das Glândulas Suprarrenais , Animais , Antígenos CD/biossíntese , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Separação Celular , Distribuição de Qui-Quadrado , Aberrações Cromossômicas , Feminino , Genótipo , Glicoproteínas/biossíntese , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutagênese Insercional , Transplante de Neoplasias , Neuroblastoma/metabolismo , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único
9.
Nat Commun ; 13(1): 2061, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35443751

RESUMO

The defining features of Alzheimer's disease (AD) include alterations in protein aggregation, immunity, lipid metabolism, synapses, and learning and memory. Of these, lipid abnormalities are the least understood. Here, we investigate the role of Stearoyl-CoA desaturase (SCD), a crucial regulator of fatty acid desaturation, in AD pathogenesis. We show that inhibiting brain SCD activity for 1-month in the 3xTg mouse model of AD alters core AD-related transcriptomic pathways in the hippocampus, and that it concomitantly restores essential components of hippocampal function, including dendritic spines and structure, immediate-early gene expression, and learning and memory itself. Moreover, SCD inhibition dampens activation of microglia, key mediators of spine loss during AD and the main immune cells of the brain. These data reveal that brain fatty acid metabolism links AD genes to downstream immune, synaptic, and functional impairments, identifying SCD as a potential target for AD treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Animais , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
10.
Hippocampus ; 21(12): 1334-47, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20623741

RESUMO

Hippocampal neurogenesis continues into adulthood in mammalian vertebrates, and in experimental rodent models it is powerfully stimulated by exposure to a voluntary running wheel. In this study, we demonstrate that exposure to a running wheel environment, in the absence of running, is sufficient to regulate specific aspects of hippocampal neurogenesis. Adult mice were provided with standard housing, housing enriched with a running wheel or housing enriched with a locked wheel (i.e., an environment comparable to that of running animals, without the possibility of engaging in running). We found that mice in the running wheel and locked wheel groups exhibited equivalent increases in proliferation within the neurogenic niche of the dentate gyrus; this included comparable increases in the proliferation of radial glia-like stem cells and the number of proliferating neuroblasts. However, only running animals displayed increased numbers of postmitotic neuroblasts and mature neurons. These results demonstrate that the running wheel environment itself is sufficient for promoting proliferation of early lineage hippocampal precursors, while running per se enables newly generated neuroblasts to survive and mature into functional hippocampal neurons. Thus, both running-independent and running-dependent stimuli are integral to running wheel-induced hippocampal neurogenesis.


Assuntos
Giro Denteado/citologia , Abrigo para Animais , Neurogênese/fisiologia , Neurônios/citologia , Corrida/fisiologia , Equipamentos Esportivos , Animais , Contagem de Células , Divisão Celular , Giro Denteado/fisiologia , Masculino , Camundongos , Células-Tronco/citologia
11.
Nat Cell Biol ; 6(11): 1082-93, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15517002

RESUMO

A fundamental question in stem cell research is whether cultured multipotent adult stem cells represent endogenous multipotent precursor cells. Here we address this question, focusing on SKPs, a cultured adult stem cell from the dermis that generates both neural and mesodermal progeny. We show that SKPs derive from endogenous adult dermal precursors that exhibit properties similar to embryonic neural-crest stem cells. We demonstrate that these endogenous SKPs can first be isolated from skin during embryogenesis and that they persist into adulthood, with a niche in the papillae of hair and whisker follicles. Furthermore, lineage analysis indicates that both hair and whisker follicle dermal papillae contain neural-crest-derived cells, and that SKPs from the whisker pad are of neural-crest origin. We propose that SKPs represent an endogenous embryonic precursor cell that arises in peripheral tissues such as skin during development and maintains multipotency into adulthood.


Assuntos
Pele/citologia , Células-Tronco/citologia , Adulto , Animais , Western Blotting , Células Cultivadas , Embrião de Galinha , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Cabelo/citologia , Humanos , Imuno-Histoquímica , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Front Neurosci ; 15: 621076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841077

RESUMO

The ventricular-subventricular zone (V-SVZ) is the principal neurogenic niche in the adult mammalian forebrain. Neural stem/progenitor cell (NSPC) activity within the V-SVZ is controlled by numerous of extrinsic factors, whose downstream effects on NSPC proliferation, survival and differentiation are transduced via a limited number of intracellular signaling pathways. Here, we investigated the relationship between age-related changes in NSPC output and activity of signaling pathways downstream of the epidermal growth factor receptor (EGFR), a major regulator of NSPC activity. Biochemical experiments indicated that age-related decline of NSPC activity in vivo is accompanied by selective deficits amongst various EGFR-induced signal pathways within the V-SVZ niche. Pharmacological loss-of-function signaling experiments with cultured NSPCs revealed both overlap and selectivity in the biological functions modulated by the EGFR-induced PI3K/AKT, MEK/ERK and mTOR signaling modules. Specifically, while all three modules promoted EGFR-mediated NSPC proliferation, only mTOR contributed to NSPC survival and only MEK/ERK repressed NSPC differentiation. Using a gain-of-function in vivo genetic approach, we electroporated a constitutively active EGFR construct into a subpopulation of quiescent, EGFR-negative neural stem cells (qNSCs); this ectopic activation of EGFR signaling enabled qNSCs to divide in 3-month-old early adult mice, but not in mice at middle-age or carrying familial Alzheimer disease mutations. Thus, (i) individual EGFR-induced signaling pathways have dissociable effects on NSPC proliferation, survival, and differentiation, (ii) activation of EGFR signaling is sufficient to stimulate qNSC cell cycle entry during early adulthood, and (iii) the proliferative effects of EGFR-induced signaling are dominantly overridden by anti-proliferative signals associated with aging and Alzheimer's disease.

13.
Eur J Neurosci ; 32(6): 905-20, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20726889

RESUMO

Alzheimer's disease (AD) affects cognitive modalities that are known to be regulated by adult neurogenesis, such as hippocampal- and olfactory-dependent learning and memory. However, the relationship between AD-associated pathologies and alterations in adult neurogenesis has remained contentious. In the present study, we performed a detailed investigation of adult neurogenesis in the triple transgenic (3xTg) mouse model of AD, a unique model that generates both amyloid plaques and neurofibrillary tangles, the hallmark pathologies of AD. In both neurogenic niches of the brain, the hippocampal dentate gyrus and forebrain subventricular zone, we found that 3xTg mice had decreased numbers of (i) proliferating cells, (ii) early lineage neural progenitors, and (iii) neuroblasts at middle age (11months old) and old age (18months old). These decreases correlated with major reductions in the addition of new neurons to the respective target areas, the dentate granule cell layer and olfactory bulb. Within the subventricular zone niche, cytological alterations were observed that included a selective loss of subependymal cells and the development of large lipid droplets within the ependyma of 3xTg mice, indicative of metabolic changes. Temporally, there was a marked acceleration of age-related decreases in 3xTg mice, which affected multiple stages of neurogenesis and was clearly apparent prior to the development of amyloid plaques or neurofibrillary tangles. Our findings indicate that AD-associated mutations suppress neurogenesis early during disease development. This suggests that deficits in adult neurogenesis may mediate premature cognitive decline in AD.


Assuntos
Doença de Alzheimer/patologia , Modelos Animais de Doenças , Emaranhados Neurofibrilares/patologia , Neurogênese/genética , Placa Amiloide/patologia , Fatores Etários , Doença de Alzheimer/genética , Animais , Proliferação de Células , Feminino , Técnicas de Introdução de Genes , Humanos , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/genética , Placa Amiloide/genética
14.
Life Sci Alliance ; 3(7)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32482782

RESUMO

The ventricular epithelium of the adult forebrain is a heterogeneous cell population that is a source of both quiescent and activated neural stem cells (qNSCs and aNSCs, respectively). We genetically targeted a subset of ventricle-contacting, glial fibrillary acidic protein (GFAP)-expressing cells, to study their involvement in qNSC/aNSC-mediated adult neurogenesis. Ventricle-contacting GFAP+ cells were lineage-traced beginning in early adulthood using adult brain electroporation and produced small numbers of olfactory bulb neuroblasts until at least 21 mo of age. Notably, electroporated GFAP+ neurogenic precursors were distinct from both qNSCs and aNSCs: they did not give rise to neurosphere-forming aNSCs in vivo or after extended passaging in vitro and they were not recruited during niche regeneration. GFAP+ cells with these properties included a FoxJ1+GFAP+ subset, as they were also present in an inducible FoxJ1 transgenic lineage-tracing model. Transiently overexpressing Mash1 increased the neurogenic output of electroporated GFAP+ cells in vivo, identifying them as a potentially recruitable population. We propose that the qNSC/aNSC lineage of the adult forebrain coexists with a distinct, minimally expanding subset of GFAP+ neurogenic precursors.


Assuntos
Ventrículos Cerebrais/metabolismo , Epitélio/metabolismo , Marcação de Genes , Fatores de Crescimento Neural/genética , Células-Tronco Neurais/metabolismo , Prosencéfalo/metabolismo , Adulto , Células-Tronco Adultas/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Imunofluorescência , Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Nicho de Células-Tronco/genética
15.
Theranostics ; 10(14): 6337-6360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483456

RESUMO

Rationale: Monoacylglycerol lipase (Mgll), a hydrolase that breaks down the endocannabinoid 2-arachidonoyl glycerol (2-AG) to produce arachidonic acid (ARA), is a potential target for neurodegenerative diseases, such as Alzheimer's disease (AD). Increasing evidence shows that impairment of adult neurogenesis by perturbed lipid metabolism predisposes patients to AD. However, it remains unknown what causes aberrant expression of Mgll in AD and how Mgll-regulated lipid metabolism impacts adult neurogenesis, thus predisposing to AD during aging. Here, we identify Mgll as an aging-induced factor that impairs adult neurogenesis and spatial memory in AD, and show that metformin, an FDA-approved anti-diabetic drug, can reduce the expression of Mgll to reverse impaired adult neurogenesis, prevent spatial memory decline and reduce ß-amyloid accumulation. Methods: Mgll expression was assessed in both human AD patient post-mortem hippocampal tissues and 3xTg-AD mouse model. In addition, we used both the 3xTg-AD animal model and the CbpS436A genetic knock-in mouse model to identify that elevated Mgll expression is caused by the attenuation of the aPKC-CBP pathway, involving atypical protein kinase C (aPKC)-stimulated Ser436 phosphorylation of histone acetyltransferase CBP through biochemical methods. Furthermore, we performed in vivo adult neurogenesis assay with BrdU/EdU labelling and Morris water maze task in both animal models following pharmacological treatments to show the key role of Mgll in metformin-corrected neurogenesis and spatial memory deficits of AD through reactivating the aPKC-CBP pathway. Finally, we performed in vitro adult neurosphere assays using both animal models to study the role of the aPKC-CBP mediated Mgll repression in determining adult neural stem/progenitor cell (NPC) fate. Results: Here, we demonstrate that aging-dependent induction of Mgll is observed in the 3xTg-AD model and human AD patient post-mortem hippocampal tissues. Importantly, we discover that elevated Mgll expression is caused by the attenuation of the aPKC-CBP pathway. The accumulation of Mgll in the 3xTg-AD mice reduces the genesis of newborn neurons and perturbs spatial memory. However, we find that metformin-stimulated aPKC-CBP pathway decreases Mgll expression to recover these deficits in 3xTg-AD. In addition, we reveal that elevated Mgll levels in cultured adult NPCs from both 3xTg-AD and CbpS436A animal models are responsible for their NPC neuronal differentiation deficits. Conclusion: Our findings set the stage for development of a clinical protocol where Mgll would serve as a biomarker in early stages of AD to identify potential metformin-responsive AD patients to restore their neurogenesis and spatial memory.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Metformina/farmacologia , Monoacilglicerol Lipases/metabolismo , Neurogênese/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Doença de Alzheimer/patologia , Animais , Biomarcadores/metabolismo , Proteína de Ligação a CREB/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase C/metabolismo
16.
Neuron ; 48(2): 253-65, 2005 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16242406

RESUMO

Precursor cells of the embryonic cortex sequentially generate neurons and then glial cells, but the mechanisms regulating this neurogenic-to-gliogenic transition are unclear. Using cortical precursor cultures, which temporally mimic this in vivo differentiation pattern, we demonstrate that cortical neurons synthesize and secrete the neurotrophic cytokine cardiotrophin-1, which activates the gp130-JAK-STAT pathway and is essential for the timed genesis of astrocytes in vitro. Our data indicate that a similar phenomenon also occurs in vivo. In utero electroporation of neurotrophic cytokines in the environment of embryonic cortical precursors causes premature gliogenesis, while acute perturbation of gp130 in cortical precursors delays the normal timed appearance of astrocytes. Moreover, the neonatal cardiotrophin-1-/- cortex contains fewer astrocytes. Together, these results describe a neural feedback mechanism; newly born neurons produce cardiotrophin-1, which instructs multipotent cortical precursors to generate astrocytes, thereby ensuring that gliogenesis does not occur until neurogenesis is largely complete.


Assuntos
Diferenciação Celular/fisiologia , Córtex Cerebral/citologia , Citocinas/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Células-Tronco , Análise de Variância , Animais , Western Blotting/métodos , Contagem de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/embriologia , Fator Neurotrófico Ciliar/farmacologia , Contactinas , Meios de Cultivo Condicionados/farmacologia , Quinase 2 Dependente de Ciclina/metabolismo , Citocinas/deficiência , Citocinas/farmacologia , Interações Medicamentosas , Proteínas ELAV/metabolismo , Embrião de Mamíferos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Imunofluorescência/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Receptores de Hialuronatos/metabolismo , Interleucina-6/farmacologia , Proteínas de Filamentos Intermediários/metabolismo , Fator Inibidor de Leucemia , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteínas de Neurofilamentos/metabolismo , Organogênese , Fosfopiruvato Hidratase/metabolismo , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Fatores de Transcrição STAT/metabolismo , Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Transfecção/métodos , Tubulina (Proteína)/metabolismo , Tirfostinas/farmacologia
17.
Hippocampus ; 19(10): 913-27, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19405143

RESUMO

Voluntary wheel-running induces a rapid increase in proliferation and neurogenesis by neural precursors present in the adult rodent hippocampus. In contrast, the responses of hippocampal and other central nervous system neural precursors following longer periods of voluntary physical activity are unclear and are an issue of potential relevance to physical rehabilitation programs. We investigated the effects of a prolonged, 6-week voluntary wheel-running paradigm on neural precursors of the CD1 mouse hippocampus and forebrain. Examination of the hippocampus following 6 weeks of running revealed two to three times as many newly born neurons and 60% more proliferating cells when compared with standard-housed control mice. Among running mice, the number of newly born neurons correlated with the total running distance. To establish the effects of wheel-running on hippocampal precursors dividing during later stages of the prolonged running regime, BrdU was administered after 3 weeks of running and the BrdU-retaining cells were analyzed 18 days later. Quantifications revealed that the effects of wheel-running were maintained in late-stage proliferating cells, as running mice had two to three times as many BrdU-retaining cells within the hippocampal dentate gyrus, and these yielded greater proportions of both mature neurons and proliferative cells. The effects of prolonged wheel-running were also detected beyond the hippocampus. Unlike short-term wheel-running, prolonged wheel-running was associated with higher numbers of proliferating cells within the ventral forebrain subventricular region, a site of age-associated decreases in neural precursor proliferation and neurogenesis. Collectively, these findings indicate that (i) prolonged voluntary wheel-running maintains an increased level of hippocampal neurogenesis whose magnitude is linked to total running performance, and (ii) that it influences multiple neural precursor populations of the adult mouse brain.


Assuntos
Células-Tronco Adultas/fisiologia , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Condicionamento Físico Animal/fisiologia , Prosencéfalo/fisiologia , Células-Tronco Adultas/citologia , Animais , Bromodesoxiuridina , Contagem de Células , Proliferação de Células , Hipocampo/citologia , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Mitose/fisiologia , Neurônios/citologia , Prosencéfalo/citologia , Corrida/fisiologia , Nicho de Células-Tronco/fisiologia , Fatores de Tempo , Volição
18.
Methods Mol Biol ; 482: 159-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19089355

RESUMO

The isolation and experimental manipulation of multipotent precursors is of increasing therapeutic relevance. We recently reported the generation of cultures of Skin-derived Precursors ('SKPs'), multipotent cells that can be isolated from the dermis of embryonic, neonatal, and adult rodent skin (1), and from adult human skin (2) SKPs have similarities to stem cells of the embryonic neural crest (3), and differentiate into a variety of neural and mesodermal cell phenotypes, including peripheral neurons and glial cells, smooth muscle cells, bone, cartilage, and adipocytes (3-5). Here, we detail the establishment, propagation, neural differentiation, and immunocytochemical analysis of SKP cultures.


Assuntos
Diferenciação Celular , Separação Celular/métodos , Pele/citologia , Células-Tronco/citologia , Animais , Proliferação de Células , Enzimas/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Esferoides Celulares/citologia
19.
Am J Ther ; 16(6): 593-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19512997

RESUMO

Eosinophilic pleural effusion is defined as an effusion in which eosinophils constitute more than 10% of white blood cells. These effusions can be due to multiple causes with drugs being implicated as one of the etiological agents. We report a case of 48-year-old woman with seizure disorder on divalproex sodium (Depakote) who presented with dyspnea. A chest radiograph demonstrated right pleural effusion. Investigations showed peripheral blood eosinophilia with thoracocentesis revealing eosinophilic exudative pleural effusion. An extensive workup for other causes of eosinophilic pleural effusion was unrevealing. Withdrawal of Depakote resulted in resolution of the effusion.


Assuntos
Anticonvulsivantes/efeitos adversos , Eosinofilia/induzido quimicamente , Derrame Pleural/induzido quimicamente , Ácido Valproico/efeitos adversos , Anticonvulsivantes/uso terapêutico , Feminino , Humanos , Pessoa de Meia-Idade , Convulsões/tratamento farmacológico , Ácido Valproico/uso terapêutico
20.
J Mol Cell Cardiol ; 45(5): 694-702, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18718475

RESUMO

Nestin-expressing cells were identified in the normal rat heart characterized by a small cell body and numerous processes and following an ischemic insult migrated to the infarct region. The present study was undertaken to identify the phenotype, origin and biological role of nestin-expressing cells during reparative fibrosis. A neural stem cell phenotype was identified based on musashi-1 expression, growth as a neurosphere, and differentiation to a neuronal cell. Using the Wnt1-cre; Z/EG transgenic mouse model, which expresses EGFP in embryologically-derived neural crest cells, the reporter signal was detected in nestin-expressing cells residing in the heart. In infarcted human hearts, nestin-expressing cells were detected in the viable myocardium and the scar and morphologically analogous to the population identified in the rat heart. Following either an ischemic insult or the acute administration of 6-hydroxydopamine, sympathetic sprouting was dependent on the physical association of neurofilament-M immunoreactive fibres with nestin-positive processes emanating from neural stem cells. To specifically study the biological role of the subpopulation in the infarct region, neural stem cells were isolated from the scar, fluorescently labelled and transplanted in the heart of 3-day post-MI rats. Injected scar-derived neural stem cells migrated to the infarct region and were used as a substrate for de novo blood vessel formation. These data have demonstrated that the heart contains a resident population of neural stem cells derived from the neural crest and participate in reparative fibrosis. Their manipulation could provide an alternative approach to ameliorate the healing process following ischemic injury.


Assuntos
Coração/fisiologia , Neovascularização Fisiológica , Animais , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Crista Neural/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neurônios/metabolismo , Oxidopamina/farmacologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA