Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Theor Appl Genet ; 135(2): 501-525, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741641

RESUMO

KEY MESSAGE: OrDeb2 confers post-attachment resistance to Orobanche cumana and is located in a 1.38 Mbp genomic interval containing a cluster of receptor-like kinase and receptor-like protein genes with nine high-confidence candidates. Sunflower broomrape is a holoparasitic angiosperm that parasitizes on sunflower roots, severely constraining crop yield. Breeding for resistance is the most effective method of control. OrDeb2 is a dominant resistance gene introgressed into cultivated sunflower from a wild-related species that confers resistance to highly virulent broomrape races. The objectives of this study were as follows: (i) locate OrDeb2 into the sunflower genome and determine putative candidate genes and (ii) characterize its underlying resistance mechanism. A segregating population from a cross between the sunflower resistant line DEB2, carrying OrDeb2, and a susceptible line was phenotyped for broomrape resistance in four experiments, including different environments and two broomrape races (FGV and GTK). This population was also densely genotyped with microsatellite and SNP markers, which allowed locating OrDeb2 within a 0.9 cM interval in the upper half of Chromosome 4. This interval corresponded to a 1.38 Mbp genomic region of the sunflower reference genome that contained a cluster of genes encoding LRR (leucine-rich repeat) receptor-like proteins lacking a cytoplasmic kinase domain and receptor-like kinases with one or two kinase domains and lacking an extracellular LRR region, which were valuable candidates for OrDeb2. Rhizotron and histological studies showed that OrDeb2 determines a post-attachment resistance response that blocks O. cumana development mainly at the cortex before the establishment of host-parasite vascular connections. This study will contribute to understand the interaction between crops and parasitic weeds, to establish durable breeding strategies based on genetic resistance and provide useful tools for marker-assisted selection and OrDeb2 map-based cloning.


Assuntos
Helianthus , Orobanche , Helianthus/genética , Orobanche/genética , Melhoramento Vegetal , Raízes de Plantas/fisiologia , Plantas Daninhas
2.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364247

RESUMO

The study of allelopathic activity of plants and the isolation and characterization of the responsible allelochemicals can lead to the development of environment friendly alternative approaches to weed control. Conyza species are invasive weeds that use allelopathic activity as part of a successful strategy to outcompete neighboring plants. Broomrape weeds are parasitic plants that use host-induced germination and the formation of a haustorium as strategies to infect host plants. The control of broomrape infection in most affected crops is limited or non-existing. In the current study, we investigated the allelopathic activity of Conyza bonariensis organic extracts in suicidal germination and radicle growth of four broomrape species (Orobanche crenata, Orobanche cumana, Orobanche minor and Phelipanche ramosa). A bioactivity-driven fractionation of Conyza bonariensis extracts led to the identification of two germination-inducing molecules and two growth-inhibitory compounds. The germination-inducing metabolites had species-specific activity being hispidulin active on seeds of O. cumana and methyl 4-hydroxybenzoate active in P. ramosa. The growth-inhibitory metabolites (4Z)-lachnophyllum lactone and (4Z,8Z)-matricaria lactone strongly inhibited the radicle growth of all parasitic weed species studied. Some structure-activity relationships were found as result of the study herein presented.


Assuntos
Conyza , Orobanche , Humanos , Plantas Daninhas , Feromônios/farmacologia , Germinação , Sementes , Lactonas/farmacologia
3.
Molecules ; 24(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557920

RESUMO

A new sesquiterpenoid belonging to the subgroup seco-eudesmanolides and named inuloxin E was isolated from Dittrichia viscosa, together with the already known sesquiterpenoids inuloxins A-D and α-costic acid. Inuloxin E was characterized by spectroscopic data (essentially NMR and ESI MS) as 3-methylene-6-(1-methyl-4-oxo-pentyl)-3a,4,7,7a-tetrahydro-3H-benzofuran-2-one. Its relative configuration was determined by comparison with the closely related inuloxin D and chemical conversion of inuloxin E into inuloxin D and by the observed significant correlation in the NOESY spectrum. Both inuloxins D and E induced germination of the parasitic weed Orobanche cumana, but were inactive on the seeds of Orobanche minor and Phelipanche ramosa. The germination activity of some hemisynthetic esters of inuloxin D was also investigated.


Assuntos
Asteraceae/química , Orobanche/efeitos dos fármacos , Orobanche/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Germinação/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Sementes/efeitos dos fármacos , Sesquiterpenos/química
4.
Org Biomol Chem ; 15(31): 6500-6510, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28745382

RESUMO

Allelochemicals are safer, more selective and more active alternatives than synthetic agrochemicals for weed control. However, the low solubility of these compounds in aqueous media limits their use as agrochemicals. Herein, we propose the application of α-, ß- and γ-cyclodextrins to improve the physicochemical properties and biological activities of three sesquiterpene lactones: dehydrocostuslactone, costunolide and (-)-α-santonin. Complexation was achieved by kneading and coprecipitation methods. Aqueous solubility was increased in the range 100-4600% and the solubility-phase diagrams suggested that complex formation had been successful. The results of the PM3 semiempirical calculations were consistent with the experimental results. The activities on etiolated wheat coleoptiles, Standard Target Species and parasitic weeds were improved. Cyclodextrins preserved or enhanced the activity of the three sesquiterpene lactones. Free cyclodextrins did not show significant activity and therefore the enhancement in activity was due to complexation. These results are promising for applications in agrochemical design.


Assuntos
Ciclodextrinas/química , Lactonas/química , Plantas Daninhas/efeitos dos fármacos , Santonina/análogos & derivados , Sesquiterpenos/química , Ciclodextrinas/síntese química , Ciclodextrinas/toxicidade , Lactonas/síntese química , Lactonas/toxicidade , Modelos Moleculares , Santonina/síntese química , Santonina/toxicidade , Sesquiterpenos/síntese química , Sesquiterpenos/toxicidade , Solubilidade
5.
Mol Biol Evol ; 32(3): 767-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534030

RESUMO

The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative "parasitism genes." Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.


Assuntos
Duplicação Gênica/genética , Orobanchaceae/genética , Transcriptoma/genética , Análise por Conglomerados , Evolução Molecular , Perfilação da Expressão Gênica , Genes de Plantas/genética , Mimulus/genética , Mimulus/fisiologia , Orobanchaceae/fisiologia
6.
New Phytol ; 202(2): 531-541, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24483232

RESUMO

Seed germination of Striga spp. (witchweeds), one of the world's most destructive parasitic weeds, cannot be induced by light but is specifically induced by strigolactones. It is not known whether Striga uses the same components for strigolactone signaling as host plants, whether it has endogenous strigolactone biosynthesis and whether there is post-germination strigolactone signaling in Striga. Strigolactones could not be detected in in vitro grown Striga, while for host-grown Striga, the strigolactone profile is dominated by a subset of the strigolactones present in the host. Branching of in vitro grown Striga is affected by strigolactone biosynthesis inhibitors. ShMAX2, the Striga ortholog of Arabidopsis MORE AXILLARY BRANCHING 2 (AtMAX2) - which mediates strigolactone signaling - complements several of the Arabidopsis max2-1 phenotypes, including the root and shoot phenotype, the High Irradiance Response and the response to strigolactones. Seed germination of max2-1 complemented with ShMAX2 showed no complementation of the Very Low Fluence Response phenotype of max2-1. Results provide indirect evidence for ShMAX2 functions in Striga. A putative role of ShMAX2 in strigolactone-dependent seed germination of Striga is discussed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte/genética , Germinação/genética , Lactonas/metabolismo , Caules de Planta/metabolismo , Sementes/metabolismo , Striga/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Genes de Plantas , Luz , Mutação , Fenótipo , Raízes de Plantas , Brotos de Planta , Caules de Planta/crescimento & desenvolvimento , Plantas Daninhas , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Striga/crescimento & desenvolvimento , Striga/metabolismo
7.
J Agric Food Chem ; 72(9): 4737-4746, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38390707

RESUMO

A methodology for the total and modulable synthesis of (4Z)-lachnophyllum lactone (1), on a gram scale, is reported for the first time. The present work started with the design of a retrosynthetic pathway for the target compound, with the key step identified in Pd-Cu bimetallic cascade cross-coupling cyclization. (4Z)-Lachnophyllum lactone (1) is an acetylenic furanone previously isolated, in a low amount, from the organic extract of the autotrophic weedConyza bonariensis. Tested against the stem parasitic weed Cuscuta campestris in a seedling growth bioassay, (4Z)-lachnophyllum lactone (1) showed almost 85% of inhibitory activity up to 0.3 mM in comparison with the control. At the same concentration, the compound displayed radicle growth inhibitory activity of the root parasitic weeds Orobanche minor and Phelipanche ramosa higher than 70 and 40%, respectively. Surprisingly, the compound showed a high percentage of inhibition, up to 0.1 mM, on C. bonariensis seed germination too. This versatile synthetic strategy was also used to obtain two further natural analogues, namely, (4E)-lachnophyllum lactone (8) and (4Z,8Z)-matricaria lactone (9), that showed, in most cases, the same inhibitory trend with slight differences, highlighting the importance of the stereochemistry and unsaturation of the side chain. Furthermore, all of the compounds showed antifungal activity at 1 mM reducing the mycelial growth of the olive pathogen Verticillium dahliae. The design and implementation of scalable and modulable total synthesis on a gram scale of acetylenic furanones allow the production of a large amount of these natural products, overcoming the limit imposed by isolation from natural sources. The results of the present study pave the way for the development of ecofriendly bioinspired pesticides with potential application in agrochemical practices as alternative to synthetic pesticides.


Assuntos
Alcaloides , Asteraceae , Orobanche , Praguicidas , Antifúngicos/farmacologia , Lactonas/química , Sementes , Plantas Daninhas , Agricultura , Alcaloides/farmacologia , Alcinos , Praguicidas/farmacologia , Germinação
8.
Plants (Basel) ; 13(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256732

RESUMO

The plant Centaurea cineraria L. subsp. cineraria has been investigated as a potential source of inhibitors of broomrape radicle growth. The latter are weeds that pose a threat to agriculture and for which there are few methods available for the control of infestations. Four sesquiterpene lactones have been isolated from C. cineraria L. subsp. cineraria aerial parts and identified as isocnicin, cnicin, salonitenolide, and 11ß,13-dihydrosalonitenolide using spectroscopic, spectrometric, and optical methods. Salonitenolide and 11ß,13-dihydrosalonitenolide have been isolated for the first time from this plant. Tested at 1.0-0.1 mM against the broomrape species Phelipanche ramosa, Orobanche minor, Orobanche crenata, and Orobanche cumana, isocnicin, cnicin, and salonitenolide demonstrated remarkable inhibitory activity (over 80% in most of the cases) at the highest concentrations. Structure-activity relationship conclusions indicated the significance of the α,ß-unsaturated lactone ring. In addition, the synthetic acetylated derivative of salonitenolide showed the strongest activity among all compounds tested, with inhibitions close to 100% at different concentrations, which has been related to a different lipophilicity and the absence of H-bond donor atoms in its structure. Neither the extracts nor the compounds exhibited the stimulating activity of broomrape germination (induction of suicidal germination). These findings highlight the potential of C. cineraria to produce bioactive compounds for managing parasitic weeds and prompt further studies on its sesquiterpene lactones as tools in developing natural product-based herbicides.

9.
BMC Evol Biol ; 13: 48, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23425243

RESUMO

BACKGROUND: Parasitic plants, represented by several thousand species of angiosperms, use modified structures known as haustoria to tap into photosynthetic host plants and extract nutrients and water. As a result of their direct plant-plant connections with their host plant, parasitic plants have special opportunities for horizontal gene transfer, the nonsexual transmission of genetic material across species boundaries. There is increasing evidence that parasitic plants have served as recipients and donors of horizontal gene transfer (HGT), but the long-term impacts of eukaryotic HGT in parasitic plants are largely unknown. RESULTS: Here we show that a gene encoding albumin 1 KNOTTIN-like protein, closely related to the albumin 1 genes only known from papilionoid legumes, where they serve dual roles as food storage and insect toxin, was found in Phelipanche aegyptiaca and related parasitic species of family Orobanchaceae, and was likely acquired by a Phelipanche ancestor via HGT from a legume host based on phylogenetic analyses. The KNOTTINs are well known for their unique "disulfide through disulfide knot" structure and have been extensively studied in various contexts, including drug design. Genomic sequences from nine related parasite species were obtained, and 3D protein structure simulation tests and evolutionary constraint analyses were performed. The parasite gene we identified here retains the intron structure, six highly conserved cysteine residues necessary to form a KNOTTIN protein, and displays levels of purifying selection like those seen in legumes. The albumin 1 xenogene has evolved through >150 speciation events over ca. 16 million years, forming a small family of differentially expressed genes that may confer novel functions in the parasites. Moreover, further data show that a distantly related parasitic plant, Cuscuta, obtained two copies of albumin 1 KNOTTIN-like genes from legumes through a separate HGT event, suggesting that legume KNOTTIN structures have been repeatedly co-opted by parasitic plants. CONCLUSIONS: The HGT-derived albumins in Phelipanche represent a novel example of how plants can acquire genes from other plants via HGT that then go on to duplicate, evolve, and retain the specialized features required to perform a unique host-derived function.


Assuntos
Miniproteínas Nó de Cistina/genética , Evolução Molecular , Transferência Genética Horizontal , Genes de Plantas , Orobanchaceae/genética , Sequência de Aminoácidos , Teorema de Bayes , DNA de Plantas/genética , Fabaceae/genética , Duplicação Gênica , Funções Verossimilhança , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA
10.
Plants (Basel) ; 12(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840045

RESUMO

Cuscuta campestris Yunck. is a parasitic weed responsible for severe yield losses in crops worldwide. The selective control of this weed is scarce due to the difficult application of methods that kill the parasite without negatively affecting the infected crop. trans-Cinnamic acid is secreted by plant roots naturally into the rhizosphere, playing allelopathic roles in plant-plant communities, although its activity in C. campestris has never been investigated. In the search for natural molecules with phytotoxic activity against parasitic weeds, this work hypothesized that trans-cinnamic acid could be active in inhibiting C. campestris growth and that a study of a series of analogs could reveal key structural features for its growth inhibition activity. In the present structure-activity relationship (SAR) study, we determined in vitro the inhibitory activity of trans-cinnamic acid and 24 analogs. The results showed that trans-cinnamic acid's growth inhibition of C. campestris seedlings is enhanced in eight of its derivatives, namely hydrocinnamic acid, 3-phenylpropionaldehyde, trans-cinnamaldehyde, trans-4-(trifluoromethyl)cinnamic acid, trans-3-chlorocinnamic acid, trans-4-chlorocinnamic acid, trans-4-bromocinnamic acid, and methyl trans-cinnamate. Among the derivatives studied, the methyl ester derivative of trans-cinnamic acid was the most active compound. The findings of this SAR study provide knowledge for the design of herbicidal treatments with enhanced activity against parasitic weeds.

11.
J Exp Bot ; 63(1): 107-19, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21920908

RESUMO

Crenate broomrape (Orobanche crenata) is considered to be the major constraint for legume crops in Mediterranean countries. Strategies of control have been developed, but only marginal successes have been achieved. For the efficient control of the parasite, a better understanding of its interaction and associated resistance mechanisms at the molecular level is required. The pea response to this parasitic plant and the molecular basis of the resistance was studied using a proteomic approach based on 2D DIGE and MALDI-MSMS analysis. For this purpose, two genotypes showing different levels of resistance to O. crenata, as well as three time points (21, 25, and 30 d after inoculation) have been compared. Multivariate statistical analysis identified 43 differential protein spots under the experimental conditions (genotypes/treatments), 22 of which were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. Most of the proteins identified were metabolic and stress-related proteins and a high percentage of them (86%) matched with specific proteins of legume species. The behaviour pattern of the identified proteins suggests the existence of defence mechanisms operating during the early stages of infection that differed in both genotypes. Among these, several proteins were identified with protease activity which could play an important role in preventing the penetration and connection to the vascular system of the parasite. Our data are discussed and compared with those previously obtained in pea and Medicago truncatula.


Assuntos
Orobanche/metabolismo , Pisum sativum/metabolismo , Proteômica , Eletroforese em Gel Bidimensional , Espectrometria de Massas em Tandem
12.
Toxins (Basel) ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35622558

RESUMO

To cope with the rising food demand, modern agriculture practices are based on the indiscriminate use of agrochemicals. Although this strategy leads to a temporary solution, it also severely damages the environment, representing a risk to human health. A sustainable alternative to agrochemicals is the use of plant metabolites and plant-based pesticides, known to have minimal environmental impact compared to synthetic pesticides. Retama raetam is a shrub growing in Algeria's desert areas, where it is commonly used in traditional medicine because of its antiseptic and antipyretic properties. Furthermore, its allelopathic features can be exploited to effectively control phytopathogens in the agricultural field. In this study, six compounds belonging to isoflavones and flavones subgroups have been isolated from the R. raetam dichloromethane extract and identified using spectroscopic and optical methods as alpinumisoflavone, hydroxyalpinumisoflavone, laburnetin, licoflavone C, retamasin B, and ephedroidin. Their antifungal activity was evaluated against the fungal phytopathogen Stemphylium vesicarium using a growth inhibition bioassay on PDA plates. Interestingly, the flavonoid laburnetin, the most active metabolite, displayed an inhibitory activity comparable to that exerted by the synthetic fungicide pentachloronitrobenzene, in a ten-fold lower concentration. The allelopathic activity of R. raetam metabolites against parasitic weeds was also investigated using two independent parasitic weed bioassays to discover potential activities on either suicidal stimulation or radicle growth inhibition of broomrapes. In this latter bioassay, ephedroidin strongly inhibited the growth of Orobanche cumana radicles and, therefore, can be proposed as a natural herbicide.


Assuntos
Fabaceae , Herbicidas , Alelopatia , Agentes de Controle Biológico/farmacologia , Fabaceae/química , Herbicidas/química , Herbicidas/toxicidade , Humanos , Plantas Daninhas
13.
Toxins (Basel) ; 14(8)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36006221

RESUMO

Orobanche cumana is an obligate holoparasitic plant with noxious effects in sunflower crops. Bellardia trixago is a facultative hemiparasitic plant that infects ruderal plants without noxious significance in agriculture and is known to produce a wide spectrum of bioactive metabolites. The objective of this study was to evaluate the allelopathic effects of B. trixago on the growth of O. cumana seedlings. Three different extracts using solvents of increasing polarity (n-hexane, dichloromethane and ethyl acetate) were prepared from the flowers, aerial green organs and roots of two populations, a white-flowered and a yellow-flowered population of B. trixago, both collected in southern Spain. Each extract was studied using allelopathic screenings on O. cumana which resulted in the identification of allelopathic activity of the ethyl acetate extracts against Orobanche radicles. Five iridoid glycosides were isolated together with benzoic acid from the ethyl acetate extract of aerial green organs by bio-guided purification. These compounds were identified as bartsioside, melampyroside, mussaenoside, gardoside methyl ester and aucubin. Among them, melampyroside was found to be the most abundant constituent in the extract (44.3% w/w), as well as the most phytotoxic iridoid on O. cumana radicle, showing a 72.6% inhibition of radicle growth. This activity of melampyroside was significantly high when compared with the inhibitory activity of benzoic acid (25.9%), a phenolic acid with known allelopathic activity against weeds. The ecotoxicological profile of melampyroside was evaluated using organisms representing different trophic levels of the aquatic and terrestrial ecosystems, namely producers (green freshwater algae Raphidocelis subcapitata and macrophyte Lepidium sativum), consumers (water flea Daphnia magna and nematode Caenorhabditis elegans) and decomposers (bacterium Aliivibrio fischeri). The ecotoxicity of melampyroside differed significantly depending on the test organism showing the highest toxicity to daphnia, nematodes and bacteria, and a lower toxicity to algae and macrophytes. The findings of the present study may provide useful information for the generation of green alternatives to synthetic herbicides for the control of O. cumana.


Assuntos
Orobanche , Ácido Benzoico/farmacologia , Ecossistema , Glicosídeos Iridoides/farmacologia , Plantas Daninhas
14.
Plants (Basel) ; 11(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365299

RESUMO

Cuscuta campestris is a parasitic weed species that inflicts worldwide noxious effects in many broadleaf crops due to its capacity to withdraw nutrients and water directly from the crop vascular system using haustorial connections. Cuscuta campestris control in the majority of crops affected is non-existent, and thus, research for the development of control methods is needed. Hydrocinnamic acid occurs naturally in the rhizosphere, playing regulatory roles in plant-plant and plant-microbe communities. The toxicity of hydrocinnamic acid against C. campestris was recently identified. In the present work, a structure-activity relationship study of 21 hydrocinnamic acid analogues was performed to identify key structural features needed for its allelopathic action against the seedling growth of this parasitic plant. The findings of this study provide the first step for the design of herbicides with enhanced activity for the control of C. campestris infection.

15.
Plants (Basel) ; 10(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805844

RESUMO

Allelopathic potential of buckwheat roots on the radicle growth of the broomrape weed species Orobanche cumana and Phelipanche ramosa was studied. Buckwheat root exudates induced a significant growth inhibition in P. ramosa radicles but radicles of O. cumana were not affected. Among the metabolites present in the root organic extract we identified the flavonol quercetin and the stilbene p-coumaric acid methyl ester with only quercetin showing inhibitory effect on P. ramosa. The activity of quercetin was compared with other two similar flavanoids, the flavone apigenin and the dihydroflavanol 3-O-acetylpadmatin extracted respectively from Lavandula stoechas and Dittrichia viscosa plants. In this comparative assay only 3-O-acetylpadmatin besides quercetin, showed inhibition activity of radicle growth while apigenin was inactive. These results indicated that the presence of two ortho-free hydroxy groups of C ring, like catechol, could be an important feature to impart activity while the carbon skeleton of B ring and substituents of both A and B rings are not essential. Besides reduction of radicle growth, haustorium induction was observed at the tip of P. ramosa radicles treated with quercetin which swelled and a layer of papillae was formed. Activity of quercetin on haustorium induction in P. ramosa was assayed in comparison with the known haustorium-inducing factor 2,6-dimethoxy-p-benzoquinone (DMBQ) and a three partial methyl ether derivatives semisynthetized from quercetin. Results indicated that P. ramosa haustorium was induced by DMBQ at concentrations of 1-0.5 mM and quercetin and its derivatives at concentration range 0.1-0.05 mM.

16.
Plants (Basel) ; 10(4)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920368

RESUMO

The holoparasitic broomrape weeds (Orobanche and Phelipanche species) cause severe yield losses throughout North Africa, the Middle East, and Southern and Eastern Europe. These parasitic weeds form an haustorium at the tip of their radicles to infect the crop upon detection of the host-derived haustorium-inducing factors. Until now, the haustorial induction in the broomrapes remains less studied than in other parasitic plant species. Known haustorium-inducing factors active in hemiparasites, such as Striga and Triphysaria species, were reported to be inefficient for the induction of haustoria in broomrape radicles. In this work, the haustorium-inducing activity of p-benzoquinone and 2,6-dimethoxy-p-benzoquinone (BQ and DMBQ) on radicles of three different broomrapes, namely Orobanche cumana, Orobanche minor and Phelipanche ramosa, is reported. Additional allelopathic effects of benzoquinones on radicle growth and radicle necrosis were studied. The results of this work suggest that benzoquinones play a role in the induction of haustorium in broomrapes. Although dependent on the broomrape species assayed and the concentration of quinones used in the test, the activity of BQ appeared to be stronger than that of DMBQ. The redox property represented by p-benzoquinone, which operates in several physiological processes of plants, insects and animals, is invoked to explain this different activity. This work confirms the usefulness of benzoquinones as haustorium-inducing factors for holoparasitic plant research. The findings of this work could facilitate future studies in the infection process, such as host-plant recognition and haustorial formation.

17.
Plants (Basel) ; 10(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918953

RESUMO

The dodders (Cuscuta spp.) are parasitic plants that feed on the stems of their host plants. Cuscuta campestris is one of the most damaging parasitic plants for the worldwide agricultural production of broad-leaved crops. Its control is limited or non-existent, therefore resistance breeding is the best alternative both economically and environmentally. Common vetch (Vicia sativa) and bitter vetch (Vicia ervilia) are highly susceptible to C. campestris, but no resistant genotypes have been identified. Thus, the aim of this study was to identify in V. sativa and V.ervilia germplasm collections genotypes resistant to C. campestris infection for use in combating this parasitic plant. Three greenhouse screening were conducted to: (1) identify resistant responses in a collection of 154 accessions of bitter vetch and a collection of 135 accessions of common vetch genotypes against infection of C. campestris; (2) confirm the resistant response identified in common vetch accessions; and (3) characterize the effect of C. campestris infection on biomass of V. sativa resistant and susceptible accessions. Most common vetch and bitter vetch genotypes tested were susceptible to C. campestris. However, the V. sativa genotype Vs.1 exhibited high resistance. The resistant phenotype was characterized by a delay in the development of C. campestris posthaustorial growth and a darkening resembling a hypersensitive-like response at the penetration site. The resistant mechanism was effective in limiting the growth of C. campestris as the ratio of parasite/host shoot dry biomass was more significantly reduced than the rest of the accessions. To the best or our knowledge, this is the first identification of Cuscuta resistance in V. sativa genotypes.

18.
Plants (Basel) ; 10(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673056

RESUMO

Bitter vetch (Vicia ervilia (L.) Willd.) is a legume well adapted to cultivation in marginal areas, being an important source of protein for animal feed in low input cropping systems. Surprisingly, it is an underutilized crop as it could be a good alternative to increase the sustainability of extensive rainfed cropping systems. In Mediterranean rainfed cropping systems, the productivity of bitter vetch is severely reduced by the parasitic weed species Orobanche crenata (Forsk). To date, few resistant bitter vetch genotypes have been identified. O. crenata infection process initiates with the recognition of germination factors exuded by roots of susceptible hosts. In this work, the interaction of a collection of bitter vetch accessions and O. crenata has been analyzed in order to discover accessions with low germination induction activity. Through a combination of field and rhizotron experiments, two bitter vetch accessions were selected showing low germination-induction activity, which resulted in less infection. In addition, in vitro germination assays revealed that the low germination activity was due to low exudation of germination factors and not due to the exudation of germination inhibitors. The selected low germination-inducers genotypes could be the basis for a new breeding program generating locally adapted alternatives with resistance to O. crenata.

19.
Plants (Basel) ; 9(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932904

RESUMO

Parasitic plants rely on neighboring host plants to complete their life cycle, forming vascular connections through which they withdraw needed nutritive resources. In natural ecosystems, parasitic plants form one component of the plant community and parasitism contributes to overall community balance. In contrast, when parasitic plants become established in low biodiversified agroecosystems, their persistence causes tremendous yield losses rendering agricultural lands uncultivable. The control of parasitic weeds is challenging because there are few sources of crop resistance and it is difficult to apply controlling methods selective enough to kill the weeds without damaging the crop to which they are physically and biochemically attached. The management of parasitic weeds is also hindered by their high fecundity, dispersal efficiency, persistent seedbank, and rapid responses to changes in agricultural practices, which allow them to adapt to new hosts and manifest increased aggressiveness against new resistant cultivars. New understanding of the physiological and molecular mechanisms behind the processes of germination and haustorium development, and behind the crop resistant response, in addition to the discovery of new targets for herbicides and bioherbicides will guide researchers on the design of modern agricultural strategies for more effective, durable, and health compatible parasitic weed control.

20.
Plants (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202947

RESUMO

Bitter vetch (Vicia ervilia L.) is an ancient grain legume used as animal feed in the Mediterranean basin. This legume has a large economical potential because of its high yield under low inputs and good protein content, as well as resistance to cold and drought. Nevertheless, its growth and production area are affected in the presence of the broomrape weed species Orobanche crenata. Due to the small bitter vetch size, infection by as few as two or three O. crenata per vetch plant can be devastating. There are no efficient methods of selectively controlling O. crenata in this crop, for which reason the development of varieties resistant and tolerant to O. crenata infection is needed. Phytogenetic resources are valuable reserves for species survival. They represent important genetic variability and allow the possibility of finding characters of interest, such as new resistance sources. A large-scale field screening of a collection of 102 bitter vetch accessions indicated that most bitter vetch accessions were susceptible but allowed us to select 16 accessions with low levels of O. crenata infection. Next, we used a combination of field and rhizotron experiments to investigate the resistant response of selected bitter vetch genotypes in detail by studying the performance and resistance mechanisms. These experiments led to the identification of three different mechanisms that block O. crenata parasitism. A pre-attachment mechanism of low induction of O.crenata germination was identified in two bitter vetch accession Ve.055 and Ve.155. In addition, a post-attachment mechanism of resistance to O. crenata penetration was identified inthe accession Ve.125. In addition, the field-resistant accession Ve.123 showed susceptible response in rhizotron, indicating that a late mechanism acting after vascular connection, most probably related with bitter vetch of escape due to fructification precocity was acting against O. crenata development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA