Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Circ Res ; 135(1): 110-134, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38808504

RESUMO

BACKGROUND: Vein graft failure following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. Although previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on vein graft failure. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. METHODS: Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing and spatial transcriptomics analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-carotid vein bypass implantation in a canine model (n=4). RESULTS: Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P<0.05) involved in the activation of endothelial cells (ECs), fibroblasts, and vascular smooth muscle cells, namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and ECM (extracellular matrix) remodeling throughout the vein wall. Subsequent single-nuclei RNA-sequencing analysis supported these findings and further unveiled distinct EC and fibroblast subpopulations with significant upregulation (P<0.05) of markers related to endothelial injury response and cellular activation of ECs, fibroblasts, and vascular smooth muscle cells. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN, FBN1, and VEGFC, in addition to novel genes of interest, such as GLIS3 and EPHA3. These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the spatial transcriptomics and single-nuclei RNA-sequencing data sets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and fibroblasts were notably enriched in the intima and media of distended veins. Finally, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal-transitioning ECs, protomyofibroblasts, and vascular smooth muscle cells in upregulating signaling pathways associated with cellular proliferation (MDK [midkine], PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor]), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. CONCLUSIONS: Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.


Assuntos
Análise de Célula Única , Transcriptoma , Animais , Cães , Masculino , Coleta de Tecidos e Órgãos/efeitos adversos , Coleta de Tecidos e Órgãos/métodos , Feminino , Transdução de Sinais , Perfilação da Expressão Gênica/métodos
2.
FASEB J ; 38(1): e23321, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031974

RESUMO

Bypass graft failure occurs in 20%-50% of coronary and lower extremity bypasses within the first-year due to intimal hyperplasia (IH). TSP-2 is a key regulatory protein that has been implicated in the development of IH following vessel injury. In this study, we developed a biodegradable CLICK-chemistry gelatin-based hydrogel to achieve sustained perivascular delivery of TSP-2 siRNA to rat carotid arteries following endothelial denudation injury. At 21 days, perivascular application of TSP-2 siRNA embedded hydrogels significantly downregulated TSP-2 gene expression, cellular proliferation, as well as other associated mediators of IH including MMP-9 and VEGF-R2, ultimately resulting in a significant decrease in IH. Our data illustrates the ability of perivascular CLICK-gelatin delivery of TSP-2 siRNA to mitigate IH following arterial injury.


Assuntos
Gelatina , Lesões do Sistema Vascular , Ratos , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Hiperplasia , Trombospondinas/genética , Proliferação de Células
3.
Ann Vasc Surg ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582204

RESUMO

Peripheral artery disease (PAD), a highly prevalent global disease, associates with significant morbidity and mortality in affected patients. Despite progress in endovascular and open revascularization techniques for advanced PAD, these interventions grapple with elevated rates of arterial restenosis and vein graft failure attributed to intimal hyperplasia (IH). Novel multiomics technologies, coupled with sophisticated analyses tools recently powered by advances in artificial intelligence, have enabled the study of atherosclerosis and IH with unprecedented single-cell and spatial precision. Numerous studies have pinpointed gene hubs regulating pivotal atherogenic and atheroprotective signaling pathways as potential therapeutic candidates. Leveraging advancements in viral and nonviral gene therapy (GT) platforms, gene editing technologies, and cutting-edge biomaterial reservoirs for delivery uniquely positions us to develop safe, efficient, and targeted GTs for PAD-related diseases. Gene therapies appear particularly fitting for ex vivo genetic engineering of IH-resistant vein grafts. This manuscript highlights currently available state-of-the-art multiomics approaches, explores promising GT-based candidates, and details GT delivery modalities employed by our laboratory and others to thwart mid-term vein graft failure caused by IH, as well as other PAD-related conditions. The potential clinical translation of these targeted GTs holds the promise to revolutionize PAD treatment, thereby enhancing patients' quality of life and life expectancy.

4.
FASEB J ; 29(5): 1869-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25667218

RESUMO

A20 protects against pathologic vascular remodeling by inhibiting the inflammatory transcription factor NF-κB. A20's function has been attributed to ubiquitin editing of receptor-interacting protein 1 (RIP1) to influence activity/stability. The validity of this mechanism was tested using a murine model of transplant vasculopathy and human cells. Mouse C57BL/6 aortae transduced with adenoviruses containing A20 (or ß-galactosidase as a control) were allografted into major histocompatibility complex-mismatched BALB/c mice. Primary endothelial cells, smooth muscle cells, or transformed epithelial cells (all human) were transfected with wild-type A20 or with catalytically inactive mutants as a control. NF-κB activity and intracellular localization of RIP1 was monitored by reporter gene assay, immunofluorescent staining, and Western blotting. Native and catalytically inactive versions of A20 had similar inhibitory effects on NF-κB activity (-70% vs. -76%; P > 0.05). A20 promoted localization of RIP1 to insoluble aggresomes in murine vascular allografts and in human cells (53% vs. 0%) without altering RIP1 expression, and this process was increased by the assembly of polyubiquitin chains (87% vs. 28%; P < 0.05). A20 captures polyubiquitinated signaling intermediaries in insoluble aggresomes, thus reducing their bioavailability for downstream NF-κB signaling. This novel mechanism contributes to protection from vasculopathy in transplanted organs treated with exogenous A20.


Assuntos
Aorta/transplante , Artérias Carótidas/cirurgia , Cisteína Endopeptidases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , NF-kappa B/metabolismo , Agregados Proteicos/fisiologia , Adenoviridae/genética , Aloenxertos , Animais , Aorta/metabolismo , Aorta/patologia , Western Blotting , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Proliferação de Células , Células Cultivadas , Cisteína Endopeptidases/genética , Proteínas Ativadoras de GTPase/genética , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Histocompatibilidade , Humanos , Imunidade Inata/imunologia , Técnicas Imunoenzimáticas , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , NF-kappa B/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitina/metabolismo , Ubiquitinação
5.
J Biol Chem ; 289(45): 30912-24, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25217635

RESUMO

IFNγ signaling in endothelial (EC) and smooth muscle cells (SMC) is a key culprit of pathologic vascular remodeling. The impact of NF-κB inhibitory protein A20 on IFNγ signaling in vascular cells remains unknown. In gain- and loss-of-function studies, A20 inversely regulated expression of IFNγ-induced atherogenic genes in human EC and SMC by modulating STAT1 transcription. In vivo, inadequate A20 expression in A20 heterozygote mice aggravated intimal hyperplasia following partial carotid artery ligation. This outcome uniquely associated with increased levels of Stat1 and super-induction of Ifnγ-dependent genes. Transcriptome analysis of the aortic media from A20 heterozygote versus wild-type mice revealed increased basal Ifnß signaling as the likely cause for higher Stat1 transcription. We confirmed higher basal IFNß levels in A20-silenced human SMC and showed that neutralization or knockdown of IFNß abrogates heightened STAT1 levels in these cells. Upstream of IFNß, A20-silenced EC and SMC demonstrated higher levels of phosphorylated/activated TANK-binding kinase-1 (TBK1), a regulator of IFNß transcription. This suggested that A20 knockdown increased STAT1 transcription by enhancing TBK1 activation and subsequently basal IFNß levels. Altogether, these results uncover A20 as a key physiologic regulator of atherogenic IFNγ/STAT1 signaling. This novel function of A20 added to its ability to inhibit nuclear factor-κB (NF-κB) activation solidifies its promise as an ideal therapeutic candidate for treatment and prevention of vascular diseases. In light of recently discovered A20/TNFAIP3 (TNFα-induced protein 3) single nucleotide polymorphisms that impart lower A20 expression or function, these results also qualify A20 as a reliable clinical biomarker for vascular risk assessment.


Assuntos
Aterosclerose/metabolismo , Cisteína Endopeptidases/fisiologia , Proteínas de Ligação a DNA/metabolismo , Interferon beta/metabolismo , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Músculo Liso Vascular/metabolismo , Proteínas Nucleares/metabolismo , Animais , Anti-Inflamatórios/química , Aorta/patologia , Movimento Celular , Constrição Patológica/metabolismo , Cisteína Endopeptidases/metabolismo , Humanos , Inflamação , Camundongos , Fosforilação , Polimorfismo de Nucleotídeo Único , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Células U937
6.
Biochim Biophys Acta ; 1833(6): 1553-61, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23499873

RESUMO

A1/Bfl-1 is a NF-κB dependent, anti-apoptotic Bcl-2 family member that contains four Bcl-2 homology domains (BH) and an amphipathic C-terminal domain, and is expressed in endothelial cells (EC). Based on NF-κB reporter assays in bovine aortic EC, we have previously demonstrated that A1, like Bcl-2 and Bcl-xL, inhibits NF-κB activation. These results, however, do not fully translate when evaluating the cell's own NF-κB machinery in human EC overexpressing A1 by means of recombinant adenovirus (rAd.) mediated gene transfer. Indeed, overexpression of full-length A1 in human umbilical vein EC (HUVEC), and human dermal microvascular EC (HDMEC) failed to inhibit NF-κB activation. However, overexpression of a mutant lacking the C-terminal domain of A1 (A1ΔC) demonstrated a potent NF-κB inhibitory effect in these cells. Disparate effects of A1 and A1ΔC on NF-κB inhibition in human EC correlated with mitochondrial (A1) versus non-mitochondrial (A1ΔC) localization. In contrast, both full-length A1 and A1ΔC protected EC from staurosporine (STS)-induced cell death, indicating that mitochondrial localization was not necessary for A1's cytoprotective function in human EC. In conclusion, our data uncover a regulatory role for the C-terminal domain of A1 in human EC: anchoring A1 to the mitochondrion, which conserves but is not necessary for its cytoprotective function, or by its absence freeing A1 from the mitochondrion and uncovering an additional anti-inflammatory effect.


Assuntos
Anti-Inflamatórios/metabolismo , Derme/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose , Western Blotting , Bovinos , Proliferação de Células , Derme/citologia , Endotélio Vascular/citologia , Imunofluorescência , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Luciferases/metabolismo , Antígenos de Histocompatibilidade Menor , NF-kappa B/genética , NF-kappa B/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética
7.
J Neuroinflammation ; 11: 122, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25026958

RESUMO

BACKGROUND: A20 (TNFAIP3) is a pleiotropic NFκB-dependent gene that terminates NFκB activation in response to inflammatory stimuli. The potent anti-inflammatory properties of A20 are well characterized in several organs. However, little is known about its role in the brain. In this study, we investigated the brain phenotype of A20 heterozygous (HT) and knockout (KO) mice. METHODS: The inflammatory status of A20 wild type (WT), HT and KO brain was determined by immunostaining, quantitative PCR, and Western blot analysis. Cytokines secretion was evaluated by ELISA. Quantitative results were statistically analyzed by ANOVA followed by a post-hoc test. RESULTS: Total loss of A20 caused remarkable reactive microgliosis and astrogliosis, as determined by F4/80 and GFAP immunostaining. Glial activation correlated with significantly higher mRNA and protein levels of the pro-inflammatory molecules TNF, IL-6, and MCP-1 in cerebral cortex and hippocampus of A20 KO, as compared to WT. Basal and TNF/LPS-induced cytokine production was significantly higher in A20 deficient mouse primary astrocytes and in a mouse microglia cell line. Brain endothelium of A20 KO mice demonstrated baseline activation as shown by increased vascular immunostaining for ICAM-1 and VCAM-1, and mRNA levels of E-selectin. In addition, total loss of A20 increased basal brain oxidative/nitrosative stress, as indicated by higher iNOS and NADPH oxidase subunit gp91phox levels, correlating with increased protein nitration, gauged by nitrotyrosine immunostaining. Notably, we also observed lower neurofilaments immunostaining in A20 KO brains, suggesting higher susceptibility to axonal injury. Importantly, A20 HT brains showed an intermediate phenotype, exhibiting considerable, albeit not statistically significant, increase in markers of basal inflammation when compared to WT. CONCLUSIONS: This is the first characterization of spontaneous neuroinflammation caused by total or partial loss of A20, suggesting its key role in maintenance of nervous tissue homeostasis, particularly control of inflammation. Remarkably, mere partial loss of A20 was sufficient to cause chronic, spontaneous low-grade cerebral inflammation, which could sensitize these animals to neurodegenerative diseases. These findings carry strong clinical relevance in that they question implication of identified A20 SNPs that lower A20 expression/function (phenocopying A20 HT mice) in the pathophysiology of neuroinflammatory diseases.


Assuntos
Encéfalo/metabolismo , Cisteína Endopeptidases/deficiência , Citocinas/metabolismo , Encefalite/genética , Encefalite/patologia , Regulação da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Encéfalo/patologia , Células Cultivadas , Cisteína Endopeptidases/genética , Lesão Axonal Difusa/etiologia , Lesão Axonal Difusa/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Prosencéfalo/citologia , Receptores de Vasopressinas/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Hepatology ; 57(5): 2014-25, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23238769

RESUMO

UNLABELLED: Liver regeneration is of major clinical importance in the setting of liver injury, resection, and transplantation. A20, a potent antiinflammatory and nuclear factor kappa B (NF-κB) inhibitory protein, has established pro-proliferative properties in hepatocytes, in part through decreasing expression of the cyclin dependent kinase inhibitor, p21. Both C-terminal (7-zinc fingers; 7Zn) and N-terminal (Nter) domains of A20 were required to decrease p21 and inhibit NF-κB. However, both independently increased hepatocyte proliferation, suggesting that additional mechanisms contributed to the pro-proliferative function of A20 in hepatocytes. We ascribed one of A20's pro-proliferative mechanisms to increased and sustained interleukin (IL)-6-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation, as a result of decreased hepatocyte expression of the negative regulator of IL-6 signaling, suppressor of cytokine signaling 3 (SOCS3). This novel A20 function segregates with its 7Zn not Nter domain. Conversely, total and partial loss of A20 in hepatocytes increased SOCS3 expression, hampering IL-6-induced STAT3 phosphorylation. Following liver resection in mice pro-proliferative targets downstream of IL-6/STAT3 signaling were increased by A20 overexpression and decreased by A20 knockdown. In contrast, IL-6/STAT3 proinflammatory targets were increased in A20-deficient livers, and decreased or unchanged in A20 overexpressing livers. Upstream of SOCS3, levels of its microRNA regulator miR203 were significantly decreased in A20-deficient livers. CONCLUSION: A20 enhances IL-6/STAT3 pro-proliferative signals in hepatocytes by down-regulating SOCS3, likely through a miR203-dependent manner. This finding together with A20 reducing the levels of the potent cell cycle brake p21 establishes its pro-proliferative properties in hepatocytes and prompts the pursuit of A20-based therapies to promote liver regeneration and repair.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Regeneração Hepática/fisiologia , Fígado/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Cisteína Endopeptidases , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Hepatectomia , Hepatócitos/metabolismo , Hepatócitos/patologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/metabolismo , Fígado/cirurgia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , MicroRNAs , Modelos Animais , NF-kappa B/metabolismo , Fosforilação , Proteína 3 Supressora da Sinalização de Citocinas , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
9.
Adv Exp Med Biol ; 809: 49-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302365

RESUMO

The A20 protein has emerged as an important negative regulator of Toll like receptor (TLR) and retinoic acid-inducible gene 1 (RIG-I)-mediated anti-viral signaling. A20 functions both as a RING-type E3 ubiquitin ligase and as a de-ubiquitinating enzyme. Nuclear factor kappa B (NF-kappaB) and interferon regulatory factor (IRF) pathways are targeted by A20 through mechanisms that appear to be both overlapping and distinct, resulting in the downregulation of interferon alpha/beta (IFNalpha/beta) production. This review specifically details the impact of A20 on the cytosolic RIG-I/MDA5 pathway, a process that is less understood than that of NF-kappaB but is essential for the regulation of the innate immune response to viral infection.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Imunidade Inata/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Vírus/imunologia , Humanos , Interferon-alfa/metabolismo , Interferon beta/metabolismo , NF-kappa B/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitinação
10.
Adv Exp Med Biol ; 809: 65-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302366

RESUMO

Resistance to anticancer drugs is a major impediment to treating patients with cancer. The molecular mechanisms deciding whether a tumor cell commits to cell death or survives under chemotherapy are complex. Mounting evidence indicates a critical role of cell death and survival pathways in determining the response of human cancers to chemotherapy. Nuclear factor-kappaB (NF-kappaB) is a eukaryotic transcription factor on the crossroad of a cell's decision to live or die. Under physiological conditions, NF-kappaB is regulated by a complex network of endogenous pathway modulators. Tumor necrosis factor alpha induced protein 3 (tnfaip3), a gene encoding the A20 protein, is one of the cell's own inhibitory molecule, which regulates canonical NF-kappaB activation by interacting with upstream signaling pathway components. Interestingly, A20 is also itself a NF-kappaB dependent gene, that has been shown to also exert cell-type specific anti- or pro-apoptotic functions. Recent reports suggest that A20 expression is increased in a number of solid human tumors. This likely contributes to both carcinogenesis and response to chemotherapy. These data uncover the complexities of the mechanisms involved in A20's impact on tumor development and response to treatment, highlighting tumor and drug-type specific outcomes. While A20-targeted therapies may certainly add to the chemotherapeutic armamentarium, better understanding of A20 regulation, molecular targets and function(s) in every single tumor and in response to any given drug is required prior to any clinical implementation. Current renewed appreciation of the unique molecular signature of each tumor holds promise for personalized chemotherapeutic regimen hopefully comprising specific A20-targeting agents i.e., both inhibitors and enhancers.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Antineoplásicos/uso terapêutico , Humanos , NF-kappa B/metabolismo , Neoplasias/tratamento farmacológico , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
11.
Adv Exp Med Biol ; 809: 117-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302369

RESUMO

Contribution of NF-kappaB inhibitory and ubiquitin-editing A20 (tnfaip3) to the liver's protective response to injury, particularly to its anti-inflammatory armamentarium, is exemplified by the dramatic phenotype of A20 knockout mice that die prematurely of unfettered inflammation predominantly in the liver. A number of additional studies originating from our laboratory and others clearly demonstrate that A20 is part of the liver response to injury and resection. Upregulation of A20 in hepatocytes serves a broad hepatoprotective goal through combined anti-inflammatory, anti-apoptotic, anti-oxidant and pro-regenerative functions. The molecular basis for A20's hepatoprotective functions were partially resolved and include blockade of NF-kappaB activation in support of its anti-inflammatory function, inhibition of pro-caspase 8 cleavage in support of its anti-apoptotic function, increasing Peroxisome Proliferator Activated Receptor alpha (PPARalpha) expression in support of its anti-oxidant function, and decreasing Cyclin Dependent Kinase Inhibitor p21 while boosting IL-6/STAT3 proliferative signals as part of its pro-regenerative function. In experimental animal models, overexpression of A20 in the liver protects from radical acute fulminant toxic hepatitis, lethal hepatectomy, and severe liver ischemia reperfusion injury (IRI), and allows successful engraftment of marginal liver grafts. Conversely, partial loss of A20, as in A20 heterozygote mice, significantly impairs liver regeneration and damage, which confers high lethality to an otherwise safe procedure i.e., 2/3 partial hepatectomy. This is the ultimate proof of the physiologic role of A20 in liver regeneration and repair. In recent work, A20's functions in the liver have expanded to encompass regulation of lipid and glucose metabolism, unlocking a whole new set of metabolic diseases that could be affected by A20. In this chapter we review all available data regarding A20's physiologic role in the liver, and Reflect on the clinical implication of these findings with regard to A20-based therapies in the context of liver transplantation, resection of large liver tumors, liver fibrosis, and metabolic liver diseases.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fígado/metabolismo , Proteínas Nucleares/fisiologia , Doença Aguda , Animais , Doença Crônica , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/fisiopatologia , Hepatopatias/etiologia , Hepatopatias/fisiopatologia , Regeneração Hepática , Proteínas Nucleares/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
12.
Adv Exp Med Biol ; 809: 163-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302371

RESUMO

The anti-inflammatory and immune regulatory functions of the ubiquitin-editing and NF-kappaB inhibitory protein A20 are well documented in vitro, and in multiple animal models. The high rank held by A20 in the cell's physiologic anti-inflammatory defense mechanisms is highlighted by the striking phenotype of A20 knockout mice, characterized by cachexia, multi-organ failure, and premature death. Even partial depletion of A20, as in A20 heterozygous mice, significantly alters NF-kappaB activation in response to pro-inflammatory activators, even though these mice are phenotypically unremarkable at baseline. A recent burst of genome wide association studies (GWAS), fueled by advances in genomic technologies and analysis tools, uncovered associations between single nucleotide polymorphisms (SNPs) at the TNFAIP3/A20 gene locus and multiple autoimmune and inflammatory diseases in humans. Interestingly, some of these studies emphasized significant associations between TNFAIP3/A20 SNPs imparting decreased expression or loss of NF-kappaB inhibitory function, and susceptibility to systemic lupus erythematosus (SLE) and coronary artery disease (CAD). These clinical data phenocopy partial loss of A20 in mouse models of inflammatory diseases, thereby incriminating TNFAIP3/A20 deficiency as a pathogenic culprit in autoimmune and inflammatory diseases. In this chapter, we undertook a thorough review of studies that explored association between TNFAIP3/A20 SNPs and human autoimmune and inflammatory diseases. Beyond the prognostic value of TNFAIP3/ A20 SNPs for assessing disease risk, their implication in the pathogenic processes of these maladies prompts the pursuit of A20-targeted therapies for disease prevention/treatment in patients harboring susceptibility haplotypes.


Assuntos
Doenças Autoimunes/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Animais , Humanos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
13.
Adv Exp Med Biol ; 809: 83-101, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302367

RESUMO

Cardiovascular disease (CVD) is the biggest killer in the Western World despite significant advances in understanding its molecular underpinnings. Chronic inflammation, the classical hallmark of atherogenesis is thought to play a key pathogenic role in the development of atherosclerotic lesions from initiation of fatty streaks to plaque rupture. Over-representation of mostly pro-inflammatory nuclear factor kappa B (NF-kappaB) target genes within atherosclerotic lesions has led to the common-held belief that excessive NF-kappaB activity promotes and aggravates atherogenesis. However, mouse models lacking various proteins involved in NF-kappaB signaling have often resulted in conflicting findings, fueling additional investigations to uncover the molecular involvement of NF-kappaB and its target genes in atherogenesis. In this chapter we will review the role of the NF-kappaB-regulated, yet potent NF-kappaB inhibitory and anti-inflammatory gene A20/TNFAIP3 in atherogenesis, and highlight the potential use of its atheroprotective properties for the prevention and treatment of cardiovascular diseases.


Assuntos
Aterosclerose/fisiopatologia , Doenças Cardiovasculares/fisiopatologia , Proteínas de Ligação a DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Animais , Citoproteção , Feminino , Humanos , Masculino , Camundongos , Músculo Liso Vascular/patologia , NF-kappa B/fisiologia , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/fisiologia
14.
J Vis Exp ; (207)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856217

RESUMO

Partial 2/3 hepatectomy in mice is used in research to study the liver's regenerative capacity and explore outcomes of liver resection in a number of disease models. In the classical partial 2/3 hepatectomy in mice, two of the five liver lobes, namely the left and median lobes representing approximately 66% of the liver mass, are resected en bloc with an expected postoperative survival of 100%. More aggressive partial hepatectomies are technically more challenging and hence, have seldom been used in mice. Our group has developed a mouse model of an extended hepatectomy technique in which three of the five liver lobes, including the left, median, and right upper lobes, are resected separately to remove approximately 78% of the total liver mass. This extended resection, in otherwise healthy mice, leaves a remnant liver that cannot always sustain adequate and timely regeneration. Failure to regenerate ultimately results in 50% postoperative lethality within 1 week due to fulminant hepatic failure. This procedure of extended 78% hepatectomy in mice represents a unique surgical model for the study of small-for-size syndrome and the evaluation of therapeutic strategies to improve liver regeneration and outcomes in the setting of liver transplantation or extended liver resection for cancer.


Assuntos
Hepatectomia , Regeneração Hepática , Modelos Animais , Animais , Hepatectomia/métodos , Camundongos , Regeneração Hepática/fisiologia , Fígado/cirurgia , Modelos Animais de Doenças
15.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961724

RESUMO

Background: Vein graft failure (VGF) following cardiovascular bypass surgery results in significant patient morbidity and cost to the healthcare system. Vein graft injury can occur during autogenous vein harvest and preparation, as well as after implantation into the arterial system, leading to the development of intimal hyperplasia, vein graft stenosis, and, ultimately, bypass graft failure. While previous studies have identified maladaptive pathways that occur shortly after implantation, the specific signaling pathways that occur during vein graft preparation are not well defined and may result in a cumulative impact on VGF. We, therefore, aimed to elucidate the response of the vein conduit wall during harvest and following implantation, probing the key maladaptive pathways driving graft failure with the overarching goal of identifying therapeutic targets for biologic intervention to minimize these natural responses to surgical vein graft injury. Methods: Employing a novel approach to investigating vascular pathologies, we harnessed both single-nuclei RNA-sequencing (snRNA-seq) and spatial transcriptomics (ST) analyses to profile the genomic effects of vein grafts after harvest and distension, then compared these findings to vein grafts obtained 24 hours after carotid-cartoid vein bypass implantation in a canine model (n=4). Results: Spatial transcriptomic analysis of canine cephalic vein after initial conduit harvest and distention revealed significant enrichment of pathways (P < 0.05) involved in the activation of endothelial cells (ECs), fibroblasts (FBs), and vascular smooth muscle cells (VSMCs), namely pathways responsible for cellular proliferation and migration and platelet activation across the intimal and medial layers, cytokine signaling within the adventitial layer, and extracellular matrix (ECM) remodeling throughout the vein wall. Subsequent snRNA-seq analysis supported these findings and further unveiled distinct EC and FB subpopulations with significant upregulation (P < 0.00001) of markers related to endothelial injury response and cellular activation of ECs, FBs, and VSMCs. Similarly, in vein grafts obtained 24 hours after arterial bypass, there was an increase in myeloid cell, protomyofibroblast, injury-response EC, and mesenchymal-transitioning EC subpopulations with a concomitant decrease in homeostatic ECs and fibroblasts. Among these markers were genes previously implicated in vein graft injury, including VCAN (versican), FBN1 (fibrillin-1), and VEGFC (vascular endothelial growth factor C), in addition to novel genes of interest such as GLIS3 (GLIS family zinc finger 3) and EPHA3 (ephrin-A3). These genes were further noted to be driving the expression of genes implicated in vascular remodeling and graft failure, such as IL-6, TGFBR1, SMAD4, and ADAMTS9. By integrating the ST and snRNA-seq datasets, we highlighted the spatial architecture of the vein graft following distension, wherein activated and mesenchymal-transitioning ECs, myeloid cells, and FBs were notably enriched in the intima and media of distended veins. Lastly, intercellular communication network analysis unveiled the critical roles of activated ECs, mesenchymal transitioning ECs, protomyofibroblasts, and VSMCs in upregulating signaling pathways associated with cellular proliferation (MDK, PDGF, VEGF), transdifferentiation (Notch), migration (ephrin, semaphorin), ECM remodeling (collagen, laminin, fibronectin), and inflammation (thrombospondin), following distension. Conclusions: Vein conduit harvest and distension elicit a prompt genomic response facilitated by distinct cellular subpopulations heterogeneously distributed throughout the vein wall. This response was found to be further exacerbated following vein graft implantation, resulting in a cascade of maladaptive gene regulatory networks. Together, these results suggest that distension initiates the upregulation of pathological pathways that may ultimately contribute to bypass graft failure and presents potential early targets warranting investigation for targeted therapies. This work highlights the first applications of single-nuclei and spatial transcriptomic analyses to investigate venous pathologies, underscoring the utility of these methodologies and providing a foundation for future investigations.

16.
J Cell Physiol ; 227(4): 1382-90, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21618526

RESUMO

Inflammation induces the NF-κB dependent protein A20 in human renal proximal tubular epithelial cells (RPTEC), which secondarily contains inflammation by shutting down NF-κB activation. We surmised that inducing A20 without engaging the pro-inflammatory arm of NF-κB could improve outcomes in kidney disease. We showed that hepatocyte growth factor (HGF) increases A20 mRNA and protein levels in RPTEC without causing inflammation. Upregulation of A20 by HGF was NF-κB/RelA dependent as it was abolished by overexpressing IκBα or silencing p65/RelA. Unlike TNFα, HGF caused minimal IκBα and p65/RelA phosphorylation, with moderate IκBα degradation. Upstream, HGF led to robust and sustained AKT activation, which was required for p65 phosphorylation and A20 upregulation. While HGF treatment of RPTEC significantly increased A20 mRNA, it failed to induce NF-κB dependent, pro-inflammatory MCP-1, VCAM-1, and ICAM-1 mRNA. This indicates that HGF preferentially upregulates protective (A20) over pro-inflammatory NF-κB dependent genes. Upregulation of A20 supported the anti-inflammatory effects of HGF in RPTEC. HGF pretreatment significantly attenuated TNFα-mediated increase of ICAM-1, a finding partially reversed by silencing A20. In conclusion, this is the first demonstration that HGF activates an AKT-p65/RelA pathway to preferentially induce A20 but not inflammatory molecules. This could be highly desirable in acute and chronic renal injury where A20-based anti-inflammatory therapies are beneficial.


Assuntos
Fator de Crescimento de Hepatócito/farmacologia , Inflamação/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/genética , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Células Cultivadas , Proteínas de Ligação a DNA , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Túbulos Renais Proximais/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Regulação para Cima/efeitos dos fármacos
17.
Arterioscler Thromb Vasc Biol ; 30(9): 1703-10, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20702812

RESUMO

OBJECTIVE: To determine the functional significance of physiological reactive oxygen species (ROS) levels in endothelium-dependent nitric oxide (NO)-mediated coronary vasodilatation. METHODS AND RESULTS: Endothelium-derived NO is important in regulating coronary vascular tone. Excess ROS have been shown to reduce NO bioavailability, resulting in endothelial dysfunction and coronary diseases. NADPH oxidase is a major source of ROS in endothelial cells (ECs). By using lucigenin-based superoxide production and dichlorfluorescein diacetate (DCFH-DA) fluorescence-activated cell sorter assays, we found that mouse heart ECs from NADPH oxidase-knockdown (p47(phox-/-)) animals have reduced NADPH oxidase activity (>40%) and ROS levels (>30%) compared with wild-type mouse heart ECs. Surprisingly, a reduction in ROS did not improve coronary vasomotion; rather, endothelium-dependent vascular endothelial growth factor-mediated coronary vasodilatation was reduced by greater than 50% in p47(phox-/-) animals. Western blots and L-citrulline assays showed a significant reduction in Akt/protein kinase B (PKB) and endothelial NO synthase phosphorylation and NO synthesis, respectively, in p47(phox-/-) coronary vessels and mouse heart ECs. Adenoviral expression of constitutively active endothelial NO synthase restored vascular endothelial growth factor-mediated coronary vasodilatation in p47(phox-/-) animals. CONCLUSIONS: Endothelium-dependent vascular endothelial growth factor regulation of coronary vascular tone may require NADPH oxidase-derived ROS to activate phosphatidylinositol 3-kinase-Akt-endothelial NO synthase axis.


Assuntos
Vasos Coronários/enzimologia , Endotélio Vascular/enzimologia , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vasodilatação , Adenoviridae/genética , Animais , Vasos Coronários/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Ativação Enzimática , Sequestradores de Radicais Livres/farmacologia , Vetores Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
18.
Front Cardiovasc Med ; 8: 651230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026871

RESUMO

Rationale: Decreased expression and activity of endothelial nitric oxide synthase (eNOS) in response to inflammatory and metabolic insults is the hallmark of endothelial cell (EC) dysfunction that preludes the development of atherosclerosis and hypertension. We previously reported the atheroprotective properties of the ubiquitin-editing and anti-inflammatory protein A20, also known as TNFAIP3, in part through interrupting nuclear factor-kappa B (NF-κB) and interferon signaling in EC and protecting these cells from apoptosis. However, A20's effect on eNOS expression and function remains unknown. In this study, we evaluated the impact of A20 overexpression or knockdown on eNOS expression in EC, at baseline and after tumor necrosis factor (TNF) treatment, used to mimic inflammation. Methods and Results: A20 overexpression in human coronary artery EC (HCAEC) significantly increased basal eNOS mRNA (qPCR) and protein (western blot) levels and prevented their downregulation by TNF. Conversely, siRNA-induced A20 knockdown decreased eNOS mRNA levels, identifying A20 as a physiologic regulator of eNOS expression. By reporter assays, using deletion and point mutants of the human eNOS promoter, and knockdown of eNOS transcriptional regulators, we demonstrated that A20-mediated increase of eNOS was transcriptional and relied on increased expression of the transcription factor Krüppel-like factor (KLF2), and upstream of KLF2, on activation of extracellular signal-regulated kinase 5 (ERK5). Accordingly, ERK5 knockdown or inhibition significantly abrogated A20's ability to increase KLF2 and eNOS expression. In addition, A20 overexpression in HCAEC increased eNOS phosphorylation at Ser-1177, which is key for the function of this enzyme. Conclusions: This is the first report demonstrating that overexpression of A20 in EC increases eNOS transcription in an ERK5/KLF2-dependent manner and promotes eNOS activating phosphorylation. This effect withstands eNOS downregulation by TNF, preventing EC dysfunction in the face of inflammation. This novel function of A20 further qualifies its therapeutic promise to prevent/treat atherosclerosis.

19.
Sci Transl Med ; 13(601)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233950

RESUMO

Inflammation is a well-known driver of lung tumorigenesis. One strategy by which tumor cells escape tight homeostatic control is by decreasing the expression of the potent anti-inflammatory protein tumor necrosis factor alpha-induced protein 3 (TNFAIP3), also known as A20. We observed that tumor cell intrinsic loss of A20 markedly enhanced lung tumorigenesis and was associated with reduced CD8+ T cell-mediated immune surveillance in patients with lung cancer and in mouse models. In mice, we observed that this effect was completely dependent on increased cellular sensitivity to interferon-γ (IFN-γ) signaling by aberrant activation of TANK-binding kinase 1 (TBK1) and increased downstream expression and activation of signal transducer and activator of transcription 1 (STAT1). Interrupting this autocrine feed forward loop by knocking out IFN-α/ß receptor completely restored infiltration of cytotoxic T cells and rescued loss of A20 depending tumorigenesis. Downstream of STAT1, programmed death ligand 1 (PD-L1) was highly expressed in A20 knockout lung tumors. Accordingly, immune checkpoint blockade (ICB) treatment was highly efficient in mice harboring A20-deficient lung tumors. Furthermore, an A20 loss-of-function gene expression signature positively correlated with survival of melanoma patients treated with anti-programmed cell death protein 1. Together, we have identified A20 as a master immune checkpoint regulating the TBK1-STAT1-PD-L1 axis that may be exploited to improve ICB therapy in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Adenocarcinoma de Pulmão/genética , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Regulação para Baixo , Humanos , Interferon gama/metabolismo , Neoplasias Pulmonares/genética , Camundongos , Transdução de Sinais
20.
Circulation ; 119(6): 871-9, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19188511

RESUMO

BACKGROUND: Decreased endothelial nitric oxide (NO) synthase (eNOS) activity and NO production are critical contributors to the endothelial dysfunction and vascular complications observed in many diseases, including diabetes mellitus. Extracellular nucleotides activate eNOS and increase NO generation; however, the mechanism of this observation is not fully clarified. METHODS AND RESULTS: To elucidate the signaling pathway(s) leading to nucleotide-mediated eNOS phosphorylation at Ser-1177, human umbilical vein endothelial cells were treated with several nucleotides, including ATP, UTP, and ADP, in the presence or absence of selective inhibitors. These experiments identified P2Y1, P2Y2, and possibly P2Y4 as the purinergic receptors involved in eNOS phosphorylation and demonstrated that this process was adenosine independent. Nucleotide-induced eNOS phosphorylation and activity were inhibited by BAPTA-AM (an intracellular free calcium chelator), rottlerin (a protein kinase Cdelta inhibitor), and protein kinase Cdelta siRNA. In contrast, blockade of AMP-activated protein kinase, calcium/calmodulin-dependent kinase II, calcium/calmodulin-dependent kinase kinase, serine/threonine protein kinase B, protein kinase A, extracellular signal-regulated kinase 1/2, and p38 mitogen-activated protein kinase did not affect nucleotide-mediated eNOS phosphorylation. CONCLUSIONS: The present study indicates that extracellular nucleotide-mediated eNOS phosphorylation is calcium and protein kinase Cdelta dependent. This newly identified signaling pathway opens new therapeutic avenues for the treatment of endothelial dysfunction.


Assuntos
Cálcio/fisiologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Quinase C-delta/fisiologia , Células Cultivadas , Células Endoteliais/enzimologia , Humanos , Óxido Nítrico/biossíntese , Nucleotídeos/farmacologia , Fosforilação , Receptores Purinérgicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA