Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 179(6): 1276-1288.e14, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778654

RESUMO

Although human genetic studies have implicated many susceptible genes associated with plasma lipid levels, their physiological and molecular functions are not fully characterized. Here we demonstrate that orphan G protein-coupled receptor 146 (GPR146) promotes activity of hepatic sterol regulatory element binding protein 2 (SREBP2) through activation of the extracellular signal-regulated kinase (ERK) signaling pathway, thereby regulating hepatic very low-density lipoprotein (VLDL) secretion, and subsequently circulating low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG) levels. Remarkably, GPR146 deficiency reduces plasma cholesterol levels substantially in both wild-type and LDL receptor (LDLR)-deficient mice. Finally, aortic atherosclerotic lesions are reduced by 90% and 70%, respectively, in male and female LDLR-deficient mice upon GPR146 depletion. Taken together, these findings outline a regulatory role for the GPR146/ERK axis in systemic cholesterol metabolism and suggest that GPR146 inhibition could be an effective strategy to reduce plasma cholesterol levels and atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Hipercolesterolemia/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Animais , Aterosclerose/sangue , Sequência de Bases , Colesterol/sangue , Dependovirus/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Jejum , Feminino , Hepatócitos/metabolismo , Humanos , Hipercolesterolemia/sangue , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Triglicerídeos/sangue , Regulação para Cima
2.
Mol Ther ; 31(9): 2591-2599, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37481703

RESUMO

Lymphodepleting pre-conditioning is a nearly universal component of T cell adoptive transfer protocols. The side effects of pre-conditioning regimens used in adoptive cell therapy are clinically significant and include pan-cytopenia, immune suppression, and reactive myelopoiesis. We conducted studies to test the hypothesis that the mechanisms underlying effective engraftment are cell autonomous and not dependent on a lymphodepleted host immune status. These studies leveraged mouse models to examine the role of Stat5 signaling during T cell adoptive transfer. We observed that, by transiently expressing a constitutively active mutamer of Stat5b during the process of adoptive transfer, we could completely obviate the need for lymphodepletion prior to adoptive transfer. Using several functional assays, we benchmark the function of the engrafted T cells against T cells transferred after conventional lymphodepletion. These studies identify a cell-autonomous mechanism driven by transient Stat5b signaling with lasting effects on T cell phenotype and function. Furthermore, the results presented suggest that adoptive T cell therapy could be improved by removing lymphodepletion protocols entirely and replacing them with RNA transfection of T cells with transcripts encoding active Stat5.


Assuntos
Transdução de Sinais , Linfócitos T , Camundongos , Animais , Transferência Adotiva , Imunoterapia Adotiva/métodos
3.
Clin Immunol ; 246: 109201, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470337

RESUMO

Novel biologics are currently being tested in clinical trials for the treatment of autoimmune diseases and the prevention of transplant allograft rejection. Their premise is to deliver highly efficient immunosuppression while minimizing side-effects, as they specifically target inflammatory mediators involved in the dysregulation of the immune system. However, the pleiotropism of soluble mediators and cell-to-cell interactions with potential to exert both proinflammatory and regulatory influences on the outcome of the immune response can lead to unpredictable results. Predicting responses to biologic drugs requires mechanistic understanding of the cell type-specific effect of immune mediators. Elucidation of the central role of regulatory T cells (Treg), a small subset of T cells dedicated to immune homeostasis, in preventing the development of auto- and allo-immunity has provided a deeper understanding of the signaling pathways that govern immune tolerance. This review focuses on the requisite signals that promote Treg homeostasis and discusses the anticipated outcomes of biologics targeting these signals. Our goal is to inform and facilitate the design of cell-specific biologics that thwart T effector cells (Teff) while promoting Treg function for the treatment of autoimmune diseases and the prevention of transplant rejection.


Assuntos
Doenças Autoimunes , Produtos Biológicos , Humanos , Linfócitos T Reguladores , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Tolerância Imunológica , Homeostase
4.
Proc Natl Acad Sci U S A ; 116(21): 10441-10446, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31040209

RESUMO

Polymorphic HLAs form the primary immune barrier to cell therapy. In addition, innate immune surveillance impacts cell engraftment, yet a strategy to control both, adaptive and innate immunity, is lacking. Here we employed multiplex genome editing to specifically ablate the expression of the highly polymorphic HLA-A/-B/-C and HLA class II in human pluripotent stem cells. Furthermore, to prevent innate immune rejection and further suppress adaptive immune responses, we expressed the immunomodulatory factors PD-L1, HLA-G, and the macrophage "don't-eat me" signal CD47 from the AAVS1 safe harbor locus. Utilizing in vitro and in vivo immunoassays, we found that T cell responses were blunted. Moreover, NK cell killing and macrophage engulfment of our engineered cells were minimal. Our results describe an approach that effectively targets adaptive as well as innate immune responses and may therefore enable cell therapy on a broader scale.


Assuntos
Engenharia Genética/métodos , Células-Tronco Pluripotentes/imunologia , Sistemas CRISPR-Cas , Linhagem Celular , Técnicas de Inativação de Genes , Genes MHC Classe I , Genes MHC da Classe II , Humanos
5.
Int Immunol ; 32(12): 771-783, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32808986

RESUMO

Diet is an environmental factor in autoimmune disorders, where the immune system erroneously destroys one's own tissues. Yet, interactions between diet and autoimmunity remain largely unexplored, particularly the impact of immunogenetics, one's human leukocyte antigen (HLA) allele make-up, in this interplay. Here, we interrogated animals and plants for the presence of epitopes implicated in human autoimmune diseases. We mapped autoimmune epitope distribution across organisms and determined their tissue expression pattern. Interestingly, diet-derived epitopes implicated in a disease were more likely to bind to HLA alleles associated with that disease than to protective alleles, with visible differences between organisms with similar autoimmune epitope content. We then analyzed an individual's HLA haplotype, generating a personalized heatmap of potential dietary autoimmune triggers. Our work uncovered differences in autoimmunogenic potential across food sources and revealed differential binding of diet-derived epitopes to autoimmune disease-associated HLA alleles, shedding light on the impact of diet on autoimmunity.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Dieta , Complexo Principal de Histocompatibilidade/imunologia , Alelos , Epitopos/imunologia , Humanos , Complexo Principal de Histocompatibilidade/genética
6.
Trends Immunol ; 38(4): 272-286, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28279591

RESUMO

During pregnancy, semiallogeneic fetal extravillous trophoblasts (EVT) invade the uterine mucosa without being rejected by the maternal immune system. Several mechanisms were initially proposed by Peter Medawar half a century ago to explain this apparent violation of the laws of transplantation. Then, three decades ago, an unusual human leukocyte antigen (HLA) molecule was identified: HLA-G. Uniquely expressed in EVT, HLA-G has since become the center of the present understanding of fetus-induced immune tolerance. Despite slow progress in the field, the last few years have seen an explosion in our knowledge of HLA-G biology. Here, we critically review new insights into the mechanisms controlling the expression and function of HLA-G at the maternal-fetal interface, and discuss their relevance for fetal tolerance.


Assuntos
Antígenos HLA-G/metabolismo , Relações Materno-Fetais , Gravidez/imunologia , Tolerância ao Transplante , Trofoblastos/imunologia , Animais , Feminino , Antígenos HLA-G/imunologia , Histocompatibilidade , Humanos , Isoantígenos/imunologia
7.
Proc Natl Acad Sci U S A ; 113(19): 5364-9, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27078102

RESUMO

HLA-G, a nonclassical HLA molecule uniquely expressed in the placenta, is a central component of fetus-induced immune tolerance during pregnancy. The tissue-specific expression of HLA-G, however, remains poorly understood. Here, systematic interrogation of the HLA-G locus using massively parallel reporter assay (MPRA) uncovered a previously unidentified cis-regulatory element 12 kb upstream of HLA-G with enhancer activity, Enhancer L Strikingly, clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of this enhancer resulted in ablation of HLA-G expression in JEG3 cells and in primary human trophoblasts isolated from placenta. RNA-seq analysis demonstrated that Enhancer L specifically controls HLA-G expression. Moreover, DNase-seq and chromatin conformation capture (3C) defined Enhancer L as a cell type-specific enhancer that loops into the HLA-G promoter. Interestingly, MPRA-based saturation mutagenesis of Enhancer L identified motifs for transcription factors of the CEBP and GATA families essential for placentation. These factors associate with Enhancer L and regulate HLA-G expression. Our findings identify long-range chromatin looping mediated by core trophoblast transcription factors as the mechanism controlling tissue-specific HLA-G expression at the maternal-fetal interface. More broadly, these results establish the combination of MPRA and CRISPR/Cas9 deletion as a powerful strategy to investigate human immune gene regulation.


Assuntos
Elementos Facilitadores Genéticos/imunologia , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Antígenos HLA-G/imunologia , Histocompatibilidade Materno-Fetal/imunologia , Troca Materno-Fetal/imunologia , Gravidez/imunologia , Trofoblastos/imunologia , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Antígenos HLA-G/genética , Histocompatibilidade Materno-Fetal/genética , Humanos , Fenômenos Imunogenéticos/genética , Troca Materno-Fetal/genética , Placenta/imunologia
8.
Int J Mol Sci ; 20(19)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623305

RESUMO

Worldwide, several million workers are employed in the various chromium (Cr) industries. These workers may suffer from a variety of adverse health effects produced by dusts, mists and fumes containing Cr in the hexavalent oxidation state, Cr(VI). Of major importance, occupational exposure to Cr(VI) compounds has been firmly associated with the development of lung cancer. Counterintuitively, Cr(VI) is mostly unreactive towards most biomolecules, including nucleic acids. However, its intracellular reduction produces several species that react extensively with biomolecules. The diversity and chemical versatility of these species add great complexity to the study of the molecular mechanisms underlying Cr(VI) toxicity and carcinogenicity. As a consequence, these mechanisms are still poorly understood, in spite of intensive research efforts. Here, we discuss the impact of Cr(VI) on the stress response-an intricate cellular system against proteotoxic stress which is increasingly viewed as playing a critical role in carcinogenesis. This discussion is preceded by information regarding applications, chemical properties and adverse health effects of Cr(VI). A summary of our current understanding of cancer initiation, promotion and progression is also provided, followed by a brief description of the stress response and its links to cancer and by an overview of potential molecular mechanisms of Cr(VI) carcinogenicity.


Assuntos
Carcinógenos Ambientais/farmacologia , Cromo/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Carcinógenos Ambientais/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Cromo/toxicidade , Dano ao DNA , Humanos , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
9.
Biometals ; 31(4): 477-487, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29549560

RESUMO

Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.


Assuntos
Carcinógenos/toxicidade , Proliferação de Células/efeitos dos fármacos , Cromo/toxicidade , Neoplasias Pulmonares/genética , Brônquios/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinógenos/farmacologia , Linhagem Celular , Cromo/farmacologia , Células Epiteliais/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Espécies Reativas de Oxigênio/química
10.
Biol Reprod ; 96(4): 831-842, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340094

RESUMO

During pregnancy, fetal extravillous trophoblasts (EVT) play a key role in the regulation of maternal T cell and NK cell responses. EVT display a unique combination of human leukocyte antigens (HLA); EVT do not express HLA-A and HLA-B, but do express HLA-C, HLA-E, and HLA-G. The mechanisms establishing this unique HLA expression pattern have not been fully elucidated. The major histocompatibility complex (MHC) class I and class II transcriptional activators NLRC5 and CIITA are expressed neither by EVT nor by the EVT model cell line JEG3, which has an MHC expression pattern identical to that of EVT. Therefore, other MHC regulators must be present to control HLA-C, HLA-E, and HLA-G expression in these cells. CIITA and NLRC5 are both members of the nucleotide-binding domain, leucine-rich repeat (NLR) family of proteins. Another member of this family, NLRP2, is highly expressed by EVT and JEG3, but not in maternal decidual stromal cells. In this study, transcription activator-like effector nuclease technology was used to delete NLRP2 in JEG3. Furthermore, lentiviral delivery of shRNA was used to knockdown NLRP2 in JEG3 and primary EVT. Upon NLRP2 deletion, Tumor Necrosis Factor-α (TNFα)-induced phosphorylation of NF-KB p65 increased in JEG3 and EVT, and more surprisingly a significant increase in constitutive HLA-C expression was observed in JEG3. These data suggest a broader role for NLR family members in the regulation of MHC expression during inflammation, thus forming a bridge between innate and adaptive immune responses. As suppressor of proinflammatory responses, NLRP2 may contribute to preventing unwanted antifetal responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Antígenos HLA-C/metabolismo , NF-kappa B/metabolismo , Trofoblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Deleção de Genes , Genes MHC Classe I/genética , Antígenos HLA-C/genética , Humanos , NF-kappa B/genética , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
11.
Methods Mol Biol ; 2748: 243-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070118

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has proven to be a successful treatment option for leukemias and lymphomas. These encouraging outcomes underscore the potential of adoptive cell therapy for other oncology applications, namely, solid tumors. However, CAR T cells are yet to succeed in treating solid tumors. Unlike liquid tumors, solid tumors create a hostile tumor microenvironment (TME). CAR T cells must traffic to the TME, survive, and retain their function to eradicate the tumor. Nevertheless, there is no universal preclinical model to systematically test candidate CARs and CAR targets for their capacity to infiltrate and eliminate human solid tumors in vivo. Here, we provide a detailed protocol to evaluate human CAR CD4+ helper T cells and CD8+ cytotoxic T cells in immunodeficient (NSG) mice bearing antigen-expressing human solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Neoplasias/patologia , Linfócitos T , Microambiente Tumoral
12.
Methods Mol Biol ; 2748: 201-241, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070117

RESUMO

The adaptive immune system exhibits exquisite specificity and memory and is involved in virtually every process in the human body. Redirecting adaptive immune cells, in particular T cells, to desired targets has the potential to lead to the creation of powerful cell-based therapies for a wide range of maladies. While conventional effector T cells (Teff) would be targeted towards cells to be eliminated, such as cancer cells, immunosuppressive regulatory T cells (Treg) would be directed towards tissues to be protected, such as transplanted organs. Chimeric antigen receptors (CARs) are designer molecules comprising an extracellular recognition domain and an intracellular signaling domain that drives full T cell activation directly downstream of target binding. Here, we describe procedures to generate and evaluate human CAR CD4+ helper T cells, CD8+ cytotoxic T cells, and CD4+FOXP3+ regulatory T cells.


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Reguladores , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
13.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617240

RESUMO

Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T-cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28 activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFNγ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.

14.
J Reprod Immunol ; 163: 104244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555747

RESUMO

Implantation and maintenance of pregnancy involve intricate immunological processes that enable the developing fetus to coexist with the maternal immune system. Progesterone, a critical hormone during pregnancy, is known to promote immune tolerance and prevent preterm labor. However, the mechanism by which progesterone mediates these effects remains unclear. In this study, we investigated the role of the non-classical progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling at the maternal-fetal interface. Using JEG3 cells, a trophoblast model cell line, we observed that progesterone stimulation increased the expression of human leukocyte antigen-C (HLA-C) and HLA-G, key molecules involved in immune tolerance. We also found that progesterone upregulated the expression of the transcription factor ELF3, which is known to regulate trophoblast-specific HLA-C expression. Interestingly, JEG3 cells lacked expression of classical progesterone receptors (PRs) but exhibited high expression of PGRMC1, a finding we confirmed in primary trophoblasts by mining sc-RNA seq data from human placenta. To investigate the role of PGRMC1 in progesterone signaling, we used CRISPR/Cas9 technology to knockout PGRMC1 in JEG3 cells. PGRMC1-deficient cells showed a diminished response to progesterone stimulation. Furthermore, we found that the progesterone antagonist RU486 inhibited ELF3 expression in a PGRMC1-dependent manner, suggesting that RU486 acts as a progesterone antagonist by competing for receptor binding. Additionally, we found that RU486 inhibited cell invasion, an important process for successful pregnancy, and this inhibitory effect was dependent on PGRMC1. Our findings highlight the crucial role of PGRMC1 in mediating the immunoregulatory effects of progesterone at the maternal-fetal interface.


Assuntos
Proteínas de Membrana , Progesterona , Receptores de Progesterona , Trofoblastos , Humanos , Receptores de Progesterona/metabolismo , Feminino , Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Trofoblastos/metabolismo , Trofoblastos/imunologia , Placenta/imunologia , Placenta/metabolismo , Transdução de Sinais/imunologia , Troca Materno-Fetal/imunologia , Implantação do Embrião/imunologia
15.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38979201

RESUMO

Adoptive chimeric antigen receptor T-cell (CAR-T) therapy is transformative and approved for hematologic malignancies. It is also being developed for the treatment of solid tumors, autoimmune disorders, heart disease, and aging. Despite unprecedented clinical outcomes, CAR-T and other engineered cell therapies face a variety of manufacturing and safety challenges. Traditional methods, such as lentivirus transduction and electroporation, result in random integration or cause significant cellular damage, which can limit the safety and efficacy of engineered cell therapies. We present hydroporation as a gentle and effective alternative for intracellular delivery. Hydroporation resulted in 1.7- to 2-fold higher CAR-T yields compared to electroporation with superior cell viability and recovery. Hydroporated cells exhibited rapid proliferation, robust target cell lysis, and increased pro-inflammatory and regulatory cytokine secretion in addition to improved CAR-T yield by day 5 post-transfection. We demonstrate that scaled-up hydroporation can process 5 x 108 cells in less than 10 s, showcasing the platform as a viable solution for high-yield CAR-T manufacturing with the potential for improved therapeutic outcomes.

16.
Front Immunol ; 13: 1042622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466853

RESUMO

TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.


Assuntos
Doenças Autoimunes , Fator de Necrose Tumoral alfa , Humanos , Linfócitos T , Contagem de Linfócitos , Transdução de Sinais , Linfócitos T CD4-Positivos
17.
Mol Metab ; 56: 101417, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902607

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease characterized by impaired immune tolerance to ß-cell antigens and progressive destruction of insulin-producing ß-cells. Animal models have provided valuable insights for understanding the etiology and pathogenesis of this disease, but they fall short of reflecting the extensive heterogeneity of the disease in humans, which is contributed by various combinations of risk gene alleles and unique environmental factors. Collectively, these factors have been used to define subgroups of patients, termed endotypes, with distinct predominating disease characteristics. SCOPE OF REVIEW: Here, we review the gaps filled by these models in understanding the intricate involvement and regulation of the immune system in human T1D pathogenesis. We describe the various models developed so far and the scientific questions that have been addressed using them. Finally, we discuss the limitations of these models, primarily ascribed to hosting a human immune system (HIS) in a xenogeneic recipient, and what remains to be done to improve their physiological relevance. MAJOR CONCLUSIONS: To understand the role of genetic and environmental factors or evaluate immune-modifying therapies in humans, it is critical to develop and apply models in which human cells can be manipulated and their functions studied under conditions that recapitulate as closely as possible the physiological conditions of the human body. While microphysiological systems and living tissue slices provide some of these conditions, HIS mice enable more extensive analyses using in vivo systems.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 1/genética , Humanos , Sistema Imunitário/patologia , Células Secretoras de Insulina/patologia , Camundongos
18.
Front Immunol ; 13: 1075813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591309

RESUMO

Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.


Assuntos
Doenças Autoimunes , Imunidade Inata , Humanos , Linfócitos , Doenças Autoimunes/terapia , Autoimunidade , Autoantígenos
19.
Front Immunol ; 12: 783282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003100

RESUMO

Treg therapies are being tested in clinical trials in transplantation and autoimmune diseases, however, the impact of inflammation on Tregs remains controversial. We challenged human Tregs ex-vivo with pro-inflammatory cytokines IL-6 and TNFα and observed greatly enhanced proliferation stimulated by anti-CD3 and anti-CD28 (aCD3/28) beads or CD28 superagonist (CD28SA). The cytokine-exposed Tregs maintained high expression of FOXP3 and HELIOS, demethylated FOXP3 enhancer, and low IFNγ, IL-4, and IL-17 secretion. Blocking TNF receptor using etanercept or deletion of TNF receptor 2 using CRISPR/Cas9 blunted Treg proliferation and attenuated FOXP3 and HELIOS expression. These results prompted us to consider using CD28SA together with IL-6 and TNFα without aCD3/28 beads (beadless) as an alternative protocol for therapeutic Treg manufacturing. Metabolomics profiling revealed more active glycolysis and oxidative phosphorylation, increased energy production, and higher antioxidant potential during beadless Treg expansion. Finally, beadless expanded Tregs maintained suppressive functions in vitro and in vivo. These results demonstrate that human Tregs positively respond to proinflammatory cytokines with enhanced proliferation without compromising their lineage identity or function. This property can be harnessed for therapeutic Treg manufacturing.


Assuntos
Doença Enxerto-Hospedeiro/terapia , Imunoterapia Adotiva/métodos , Interleucina-6/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Etanercepte/farmacologia , Feminino , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Voluntários Saudáveis , Humanos , Fator de Transcrição Ikaros/análise , Fator de Transcrição Ikaros/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Cultura Primária de Células , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Transplante Heterólogo/efeitos adversos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto Jovem
20.
Front Immunol ; 12: 686439, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616392

RESUMO

Infusion of regulatory T cells (Tregs) engineered with a chimeric antigen receptor (CAR) targeting donor-derived human leukocyte antigen (HLA) is a promising strategy to promote transplant tolerance. Here, we describe an anti-HLA-A2 CAR (A2-CAR) generated by grafting the complementarity-determining regions (CDRs) of a human monoclonal anti-HLA-A2 antibody into the framework regions of the Herceptin 4D5 single-chain variable fragment and fusing it with a CD28-ζ signaling domain. The CDR-grafted A2-CAR maintained the specificity of the original antibody. We then generated HLA-A2 mono-specific human CAR Tregs either by deleting the endogenous T-cell receptor (TCR) via CRISPR/Cas9 and introducing the A2-CAR using lentiviral transduction or by directly integrating the CAR construct into the TCR alpha constant locus using homology-directed repair. These A2-CAR+TCRdeficient human Tregs maintained both Treg phenotype and function in vitro. Moreover, they selectively accumulated in HLA-A2-expressing islets transplanted from either HLA-A2 transgenic mice or deceased human donors. A2-CAR+TCRdeficient Tregs did not impair the function of these HLA-A2+ islets, whereas similarly engineered A2-CAR+TCRdeficientCD4+ conventional T cells rejected the islets in less than 2 weeks. A2-CAR+TCRdeficient Tregs delayed graft-versus-host disease only in the presence of HLA-A2, expressed either by co-transferred peripheral blood mononuclear cells or by the recipient mice. Altogether, we demonstrate that genome-engineered mono-antigen-specific A2-CAR Tregs localize to HLA-A2-expressing grafts and exhibit antigen-dependent in vivo suppression, independent of TCR expression. These approaches may be applied towards developing precision Treg cell therapies for transplant tolerance.


Assuntos
Anticorpos/metabolismo , Antígeno HLA-A2/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Reguladores/transplante , Tolerância ao Transplante , Animais , Engenharia Celular , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Humanos , Imunoterapia Adotiva , Masculino , Camundongos , Camundongos Endogâmicos NOD , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA