Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Drug Deliv Sci Technol ; 63: 102430, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33649708

RESUMO

INTRODUCTION: The outbreak of the disease caused by the new coronavirus (COVID-19) has been affecting society's routine and its patterns of interaction worldwide, in addition to the impact on the global economy. To date, there is still no clinically effective treatment for this comorbidity, and drug repositioning might be a good strategy considering the established clinical safety profile. In this context, since COVID-19 affects the respiratory tract, a promising approach would be the pulmonary drug delivery. OBJECTIVE: Identify repurposing drug candidates for the treatment of COVID-19 based on the data of ongoing clinical trials and in silico studies and also assess their potential to be applied in formulations for pulmonary administration. METHOD: A integrative literature review was conducted between June and July 2020, by extracting the results from Clinical Trials, PubMed, Web of Science and Science Direct databases. RESULTS: By crossing the results obtained from diverse sources, 21 common drugs were found, from which only 4 drugs presented studies of pulmonary release formulations, demonstrating the need for greater investment and incentive in this field. CONCLUSION: Even though the lung is a target that facilitates viral infection and replication, formulations for pulmonary delivery of suitable drugs are still lacking for COVID-19 treatment. However, it is indisputable that the pandemic constitutes a concrete demand, with a profound impact on public health, and that, with the appropriate investments, it will give the pharmaceutical industry an opportunity to reinforce the pulmonary delivery field.

2.
Int J Pharm ; 650: 123721, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38110011

RESUMO

Mebendazole (MBZ) is a broad-spectrum active pharmaceutical ingredient (API) indicated for treating parasitosis, and it has three solid-state forms, A, B, and C. These solid forms exhibit significant differences in dissolution properties, which cause considerable changes in the therapeutic effect. When at least 30 % of Form A is present in the formulation, it has a similar effect to the placebo. The aim of this study was to develop a reliable quantitative method for MBZ (Forms A and C) suspensions that allowed to study the solid-state stability and the kinetics of the solid-state transformation of MBZ suspensions under the recommended pharmaceutical industry conditions. One method was developed to carry out the drying process and the other one to quantify Forms A and C of MBZ suspensions; both were evaluated. For the stability study, samples were prepared with different starting reference concentrations of Form A and stored from 1 to 24 months under long-term stability conditions (30 ± 2 °C and 75 ± 5 % RH) and from 1 to 6 months under accelerated stability conditions (40 ± 2 °C and 75 ± 5 % RH). Data collection was performed by powder X-ray diffraction (PXRD). The Rietveld method (RM) and Topas's program were used to solid form quantification. Avrami's equation was used to determine the kinetic parameters. The results showed that the combination of the drying process and solid form quantification developed method for suspension was a very accurate methodology for solid-state stability studies. Furthermore, in long-term and accelerated solid-state conditions, suspension with an initial value of 1 % of Form A were sufficient to cause a solid-state transformation (Form C to A) greater than 30 % in the first and second months, with a complete transformation in nine and six months respectively. These results demonstrate that suspensions show complete solid-state transformation (Form C to A) in a shorter time than the product's shelf life (∼2 years). In this work, a reliable methodology was developed to quantify MBZ (Forms A and C) suspensions. This methodology could be used to control the different solid forms for MBZ and other APIs to avoid solid-state transformation problems.


Assuntos
Mebendazol , Difração de Raios X , Pós , Solubilidade , Cristalização , Suspensões
3.
Int J Pept ; 2011: 945397, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21760823

RESUMO

The cramoll 1,4 is a well-studied lectin. However, few studies about its biodistribution have been done before. In this study, we radiolabeled the cramol 1,4 with Tc-99m and analyzed the biodistribution. The results showed that the cramol has an abnormal uptake by the bowel with reflections on its clearance mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA