Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neural Plast ; 2018: 3678534, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29808082

RESUMO

Insomnia might occur as result of increased cognitive and physiological arousal caused by acute or long acting stressors and associated cognitive rumination. This might lead to alterations in brain connectivity patterns as those captured by functional connectivity fMRI analysis, leading to potential insight about primary insomnia (PI) pathophysiology as well as the impact of long-term exposure to sleep deprivation. We investigated changes of voxel-wise connectivity patterns in a sample of 17 drug-naïve PI patients and 17 age-gender matched healthy controls, as well as the relationship between brain connectivity and age of onset, illness duration, and severity. Results showed a significant increase in resting-state functional connectivity of the bilateral visual cortex in PI patients, associated with decreased connectivity between the visual cortex and bilateral temporal pole. Regression with clinical scores originally unveiled a pattern of increased local connectivity as measured by intrinsic connectivity contrast (ICC), specifically resembling the default mode network (DMN). Additionally, age of onset was found to be correlated with the connectivity of supplementary motor area (SMA), and the strength of DMN←→SMA connectivity was significantly correlated with both age of onset (R2 = 41%) and disease duration (R2 = 21%). Chronic sleep deprivation, but most importantly early insomnia onset, seems to have a significant disruptive effect over the physiological negative correlation between DMN and SMA, a well-known fMRI marker of attention performance in humans. This suggests the need for more in-depth investigations on the prevention and treatment of connectivity changes and associated cognitive and psychological deficits in PI patients.


Assuntos
Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Distúrbios do Início e da Manutenção do Sono/epidemiologia , Adolescente , Adulto , Idade de Início , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Autorrelato , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Adulto Jovem
3.
Front Psychol ; 12: 598410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177682

RESUMO

First-Person Shooter (FPS) game experience can be transferred to untrained cognitive functions such as attention, visual short-term memory, spatial cognition, and decision-making. However, previous studies have been using off-the-shelf FPS games based on predefined gaming settings, therefore it is not known whether such improvement of in game performance and transfer of abilities can be further improved by creating a in-game, adaptive in-game training protocol. To address this question, we compared the impact of a popular FPS-game (Counter-Strike:Global-Offensive-CS:GO) with an ad hoc version of the game based on a personalized, adaptive algorithm modifying the artificial intelligence of opponents as well as the overall game difficulty on the basis of individual gaming performance. Two groups of FPS-naïve healthy young participants were randomly assigned to playing one of the two game versions (11 and 10 participants, respectively) 2 h/day for 3 weeks in a controlled laboratory setting, including daily in-game performance monitoring and extensive cognitive evaluations administered before, immediately after, and 3 months after training. Participants exposed to the adaptive version of the game were found to progress significantly faster in terms of in-game performance, reaching gaming scenarios up to 2.5 times more difficult than the group exposed to standard CS:GO (p < 0.05). A significant increase in cognitive performance was also observed. Personalized FPS gaming can significantly speed-up the learning curve of action videogame-players, with possible future applications for expert-video-gamers and potential relevance for clinical-rehabilitative applications.

4.
Behav Brain Res ; 353: 62-73, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29944915

RESUMO

Recent evidence shows how an extensive gaming experience might positively impact cognitive and perceptual functioning, leading to brain structural changes observed in cross-sectional studies. Importantly, changes seem to be game-specific, reflecting gameplay styles and therefore opening to the possibility of tailoring videogames according to rehabilitation and enhancement purposes. However, whether if such brain effects can be induced even with limited gaming experience, and whether if they can outlast the gaming period, is still unknown. Here we quantified both cognitive and grey matter thickness changes following 15 daily gaming sessions based on a modified version of a 3D first-person shooter (FPS) played in laboratory settings. Twenty-nine healthy participants were randomly assigned to a control or a gaming group and underwent a cognitive assessment, an in-game performance evaluation and structural magnetic resonance imaging before (T0), immediately after (T1) and three months after the end of the experiment (T2). At T1, a significant increase in thickness of the bilateral parahippocampal cortex (PHC), somatosensory cortex (S1), superior parietal lobule (SPL) and right insula were observed. Changes in S1 matched the hand representation bilaterally, while PHC changes corresponded to the parahippocampal place area (PPA). Surprisingly, changes in thickness were still present at T2 for S1, PHC, SPL and right insula as compared to T0. Finally, surface-based regression identified the lingual gyrus as the best predictor of changes in game performance at T1. Results stress the specific impact of core game elements, such as spatial navigation and visuomotor coordination on structural brain properties, with effects outlasting even a short intensive gaming period.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Prática Psicológica , Jogos de Vídeo , Adulto , Atenção , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Plasticidade Neuronal , Tamanho do Órgão , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA