Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 603(7903): 835-840, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35355001

RESUMO

The quality of crystalline two-dimensional (2D) polymers1-6 is intimately related to the elusive polymerization and crystallization processes. Understanding the mechanism of such processes at the (sub)molecular level is crucial to improve predictive synthesis and to tailor material properties for applications in catalysis7-10 and (opto)electronics11,12, among others13-18. We characterize a model boroxine 2D dynamic covalent polymer, by using in situ scanning tunnelling microscopy, to unveil both qualitative and quantitative details of the nucleation-elongation processes in real time and under ambient conditions. Sequential data analysis enables observation of the amorphous-to-crystalline transition, the time-dependent evolution of nuclei, the existence of 'non-classical' crystallization pathways and, importantly, the experimental determination of essential crystallization parameters with excellent accuracy, including critical nucleus size, nucleation rate and growth rate. The experimental data have been further rationalized by atomistic computer models, which, taken together, provide a detailed picture of the dynamic on-surface polymerization process. Furthermore, we show how 2D crystal growth can be affected by abnormal grain growth. This finding provides support for the use of abnormal grain growth (a typical phenomenon in metallic and ceramic systems) to convert a polycrystalline structure into a single crystal in organic and 2D material systems.

2.
J Am Chem Soc ; 142(16): 7699-7708, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32212655

RESUMO

Controlled covalent functionalization of graphitic surfaces with molecular scale precision is crucial for tailored modulation of the chemical and physical properties of carbon materials. We herein present that porous self-assembled molecular networks (SAMNs) act as nanometer scale template for the covalent electrochemical functionalization of graphite using an aryldiazonium salt. Hexagonally aligned achiral grafted species with lateral periodicity of 2.3, 2.7, and 3.0 nm were achieved utilizing SAMNs having different pore-to-pore distances. The unit cell vectors of the grafted pattern match those of the SAMN. After the covalent grafting, the template SAMNs can be removed by simple washing with a common organic solvent. We briefly discuss the mechanism of the observed pattern transfer. The unit cell vectors of the grafted pattern align along nonsymmetry axes of graphite, leading to mirror image grafted domains, in accordance with the domain-specific chirality of the template. In the case in which a homochiral building block is used for SAMN formation, one of the 2D mirror image grafted patterns is canceled. This is the first example of a nearly crystalline one-sided or supratopic covalent chemical functionalization. In addition, the positional control imposed by the SAMN renders the functionalized surface (homo)chiral reaching a novel level of control for the functionalization of carbon surfaces, including surface-supported graphene.

3.
J Am Chem Soc ; 142(19): 8662-8671, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32306725

RESUMO

Stereocontrolled multilayer growth of supramolecular porous networks at the interface between graphite and a solution was investigated. For this study, we designed a chiral dehydrobenzo[12]annulene (DBA) building block bearing alkoxy chains substituted at the 2 position with hydroxy groups, which enable van der Waals stabilization in a layer and potential hydrogen-bonding interactions between the layers. Bias voltage-dependent scanning tunneling microscopy (STM) experiments revealed the diastereospecificity of the bilayer with respect to both the intrinsic chirality of the building blocks and the supramolecular chirality of the self-assembled networks. Top and bottom layers within the same crystalline domain were composed of the same enantiomers but displayed opposite supramolecular chiralities.

4.
Nat Mater ; 15(3): 304-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26657328

RESUMO

Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials.


Assuntos
Imidazóis/química , Zeolitas/química , Gases , Membranas Artificiais , Microscopia Eletrônica de Varredura , Estrutura Molecular , Propriedades de Superfície , Difração de Raios X
5.
Chem Commun (Camb) ; 52(77): 11465-11487, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27709179

RESUMO

Nanoporous supramolecular networks physisorbed on solid surfaces have been extensively used to immobilize a variety of guest molecules. Host-guest chemistry in such two-dimensional (2D) porous networks is a rapidly expanding field due to potential applications in separation technology, catalysis and nanoscale patterning. Diverse structural topologies with high crystallinity have been obtained to capture molecular guests of different sizes and shapes. A range of non-covalent forces such as hydrogen bonds, van der Waals interactions, coordinate bonds have been employed to assemble the host networks. Recent years have witnessed a surge in the activity in this field with the implementation of rational design strategies for realizing controlled and selective guest capture. In this feature article, we review the development in the field of surface-supported host-guest chemistry as studied by scanning tunneling microscopy (STM). Typical host-guest architectures studied on solid surfaces, both under ambient conditions at the solution-solid interface as well as those formed at the ultrahigh vacuum (UHV)-solid interface, are described. We focus on isoreticular host networks, hosts functionalized pores and dynamic host-guest systems that respond to external stimuli.

7.
J Am Chem Soc ; 129(31): 9819-28, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17629275

RESUMO

A comparative study on oligo(p-phenylene vinylene) (OPV)-appended porphyrins containing all trans-vinylene (either hydrophilic or lipophilic) or amide linkages (lipophilic) is presented. The type of supramolecular arrangement obtained in organic solvents proves to be strongly dependent on the nature of the covalent connection. In the case of all trans-vinylene linkages, a J-type intermolecular packing is obtained and the assemblies are only of moderate stability. Conversely, the supramolecular structures obtained from the amide-linked system display an H-type stacking arrangement of enhanced stability and chirality as a consequence of intermolecular hydrogen bonding along the stack direction, favorably interlocking the stacked building blocks. Interestingly, the observed differences in stability and organization are qualitatively illustrated by monitoring the sequential energy transfer process in both types of assemblies. Efficient intramolecular energy transfer from the OPVs (donors) to the respective porphyrin cores is followed by energy transfer from Zn-porphyrin (donor) to free-base porphyrin (acceptor) in both systems. However, the improved intermolecular organization for the amide-linked system increases the energy transfer efficiency along the stack direction. In addition, the water-soluble (OPV)-appended porphyrin system forms highly stable assemblies in an aqueous environment. Nevertheless, the poor energy transfer efficiency along the stack direction reveals a relative lack of organization in these assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA