Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 20(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35877716

RESUMO

Two novel natural products, the polyketide cuniculene and the peptide antibiotic aquimarin, were recently discovered from the marine bacterial genus Aquimarina. However, the diversity of the secondary metabolite biosynthetic gene clusters (SM-BGCs) in Aquimarina genomes indicates a far greater biosynthetic potential. In this study, nine representative Aquimarina strains were tested for antimicrobial activity against diverse human-pathogenic and marine microorganisms and subjected to metabolomic and genomic profiling. We found an inhibitory activity of most Aquimarina strains against Candida glabrata and marine Vibrio and Alphaproteobacteria species. Aquimarina sp. Aq135 and Aquimarina muelleri crude extracts showed particularly promising antimicrobial activities, amongst others against methicillin-resistant Staphylococcus aureus. The metabolomic and functional genomic profiles of Aquimarina spp. followed similar patterns and were shaped by phylogeny. SM-BGC and metabolomics networks suggest the presence of novel polyketides and peptides, including cyclic depsipeptide-related compounds. Moreover, exploration of the 'Sponge Microbiome Project' dataset revealed that Aquimarina spp. possess low-abundance distributions worldwide across multiple marine biotopes. Our study emphasizes the relevance of this member of the microbial rare biosphere as a promising source of novel natural products. We predict that future metabologenomics studies of Aquimarina species will expand the spectrum of known secondary metabolites and bioactivities from marine ecosystems.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Flavobacteriaceae , Staphylococcus aureus Resistente à Meticilina , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Bacteroidetes/genética , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Ecossistema , Flavobacteriaceae/genética , Humanos , Metaboloma , Filogenia
2.
Appl Environ Microbiol ; 71(8): 4703-12, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16085866

RESUMO

The commercial gelling agent gellan is a heteropolysaccharide produced by Sphingomonas elodea ATCC 31461. In this work, we carried out the biochemical characterization of the enzyme encoded by the first gene (rmlA) of the rml 4-gene cluster present in the 18-gene cluster required for gellan biosynthesis (gel cluster). Based on sequence homology, the putative rml operon is presumably involved in the biosynthesis of dTDP-rhamnose, the sugar necessary for the incorporation of rhamnose in the gellan repeating unit. Heterologous RmlA was purified as a fused His6-RmlA protein from extracts prepared from Escherichia coli IPTG (isopropyl-beta-D-thiogalactopyranoside)-induced cells, and the protein was proven to exhibit dTDP-glucose pyrophosphorylase (Km of 12.0 microM for dTDP-glucose) and UDP-glucose pyrophosphorylase (Km of 229.0 microM for UDP-glucose) activities in vitro. The N-terminal region of RmlA exhibits the motif G-X-G-T-R-X2-P-X-T, which is highly conserved among bacterial XDP-sugar pyrophosphorylases. The motif E-E-K-P, with the conserved lysine residue (K163) predicted to be essential for glucose-1-phosphate binding, was observed. The S. elodea ATCC 31461 UgpG protein, encoded by the ugpG gene which maps outside the gel cluster, was previously identified as the UDP-glucose pyrophosphorylase involved in the formation of UDP-glucose, also required for gellan synthesis. In this study, we demonstrate that UgpG also exhibits dTDP-glucose pyrophosphorylase activity in vitro and compare the kinetic parameters of the two proteins for both substrates. DNA sequencing of ugpG gene-adjacent regions and sequence similarity studies suggest that this gene maps with others involved in the formation of sugar nucleotides presumably required for the biosynthesis of another cell polysaccharide(s).


Assuntos
Proteínas de Bactérias/genética , Nucleotidiltransferases/metabolismo , Polissacarídeos Bacterianos/biossíntese , Sphingomonas/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Escherichia coli/enzimologia , Escherichia coli/genética , Dados de Sequência Molecular , Nucleotidiltransferases/genética , Sphingomonas/genética , UTP-Glucose-1-Fosfato Uridililtransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA