RESUMO
BACKGROUND: Managing critical bleeding with massive transfusion (MT) requires a multidisciplinary team, often physically separated, to perform several simultaneous tasks at short notice. This places a significant cognitive load on team members, who must maintain situational awareness in rapidly changing scenarios. Similar resuscitation scenarios have benefited from the use of clinical decision support (CDS) tools. STUDY DESIGN AND METHODS: A multicenter, multidisciplinary, user-centered design (UCD) study was conducted to design a computerized CDS for MT. This study included analysis of the problem context with a cognitive walkthrough, development of a user requirement statement, and co-design with users of prototypes for testing. The final prototype was evaluated using qualitative assessment and the System Usability Scale (SUS). RESULTS: Eighteen participants were recruited across four institutions. The first UCD cycle resulted in the development of four prototype interfaces that addressed the user requirements and context of implementation. Of these, the preferred interface was further developed in the second UCD cycle to create a high-fidelity web-based CDS for MT. This prototype was evaluated by 15 participants using a simulated bleeding scenario and demonstrated an average SUS of 69.3 (above average, SD 16) and a clear interface with easy-to-follow blood product tracking. DISCUSSION: We used a UCD process to explore a highly complex clinical scenario and develop a prototype CDS for MT that incorporates distributive situational awareness, supports multiple user roles, and allows simulated MT training. Evaluation of the impact of this prototype on the efficacy and efficiency of managing MT is currently underway.
Assuntos
Sistemas de Apoio a Decisões Clínicas , Humanos , Design Centrado no Usuário , Transfusão de Sangue , Conscientização , Simulação por ComputadorRESUMO
BACKGROUND: Management of major hemorrhage frequently requires massive transfusion (MT) support, which should be delivered effectively and efficiently. We have previously developed a clinical decision support system (CDS) for MT using a multicenter multidisciplinary user-centered design study. Here we examine its impact when administering a MT. STUDY DESIGN AND METHODS: We conducted a randomized simulation trial to compare a CDS for MT with a paper-based MT protocol for the management of simulated hemorrhage. A total of 44 specialist physicians, trainees (residents), and nurses were recruited across critical care to participate in two 20-min simulated bleeding scenarios. The primary outcome was the decision velocity (correct decisions per hour) and overall task completion. Secondary outcomes included cognitive workload and System Usability Scale (SUS). RESULTS: There was a statistically significant increase in decision velocity for CDS-based management (mean 8.5 decisions per hour) compared to paper based (mean 6.9 decisions per hour; p .003, 95% CI 0.6-2.6). There was no significant difference in the overall task completion using CDS-based management (mean 13.3) compared to paper-based (mean 13.2; p .92, 95% CI -1.2-1.3). Cognitive workload was statistically significantly lower using the CDS compared to the paper protocol (mean 57.1 vs. mean 64.5, p .005, 95% CI 2.4-12.5). CDS usability was assessed as a SUS score of 82.5 (IQR 75-87.5). DISCUSSION: Compared to paper-based management, CDS-based MT supports more time-efficient decision-making by users with limited CDS training and achieves similar overall task completion while reducing cognitive load. Clinical implementation will determine whether the benefits demonstrated translate to improved patient outcomes.
Assuntos
Sistemas de Apoio a Decisões Clínicas , Humanos , Simulação por Computador , Hemorragia , Estudos Multicêntricos como Assunto , Carga de TrabalhoRESUMO
Massive transfusions guided by massive transfusion protocols are commonly used to manage critical bleeding, when the patient is at significant risk of morbidity and mortality, and multiple timely decisions must be made by clinicians. Clinical decision support systems are increasingly used to provide patient-specific recommendations by comparing patient information to a knowledge base, and have been shown to improve patient outcomes. To investigate current massive transfusion practice and the experiences and attitudes of anaesthetists towards massive transfusion and clinical decision support systems, we anonymously surveyed 1000 anaesthetists and anaesthesia trainees across Australia and New Zealand. A total of 228 surveys (23.6%) were successfully completed and 227 were analysed for a 23.3% response rate. Most respondents were involved in massive transfusions infrequently (88.1% managed five or fewer massive transfusion protocols per year) and worked at hospitals which have massive transfusion protocols (89.4%). Massive transfusion management was predominantly limited by timely access to point-of-care coagulation assessment and by competition with other tasks, with trainees reporting more significant limitations compared to specialists. The majority of respondents reported that they were likely, or very likely, both to use (73.1%) and to trust (85%) a clinical decision support system for massive transfusions, with no significant difference between anaesthesia trainees and specialists (P = 0.375 and P = 0.73, respectively). While the response rate to our survey was poor, there was still a wide range of massive transfusion experience among respondents, with multiple subjective factors identified limiting massive transfusion practice. We identified several potential design features and barriers to implementation to assist with the future development of a clinical decision support system for massive transfusion, and overall wide support for a clinical decision support system for massive transfusion among respondents.