Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Chem Soc ; 146(15): 10407-10417, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572973

RESUMO

Nitroaromatic compounds are major constituents of the brown carbon aerosol particles in the troposphere that absorb near-ultraviolet (UV) and visible solar radiation and have a profound effect on the Earth's climate. The primary sources of brown carbon include biomass burning, forest fires, and residential burning of biofuels, and an important secondary source is photochemistry in aqueous cloud and fog droplets. Nitrobenzene is the smallest nitroaromatic molecule and a model for the photochemical behavior of larger nitroaromatic compounds. Despite the obvious importance of its droplet photochemistry to the atmospheric environment, there have not been any detailed studies of the ultrafast photochemical dynamics of nitrobenzene in aqueous solution. Here, we combine femtosecond transient absorption spectroscopy, time-resolved infrared spectroscopy, and quantum chemistry calculations to investigate the primary steps following the near-UV (λ ≥ 340 nm) photoexcitation of aqueous nitrobenzene. To understand the role of the surrounding water molecules in the photochemical dynamics of nitrobenzene, we compare the results of these investigations with analogous measurements in solutions of methanol, acetonitrile, and cyclohexane. We find that vibrational energy transfer to the aqueous environment quenches internal excitation, and therefore, unlike the gas phase, we do not observe any evidence for formation of photoproducts on timescales up to 500 ns. We also find that hydrogen bonding between nitrobenzene and surrounding water molecules slows the S1/S0 internal conversion process.

2.
J Am Chem Soc ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39450513

RESUMO

Nitroaromatic compounds are found in brown carbon aerosols emitted to the Earth's atmosphere by biomass burning, and are important organic chromophores for the absorption of solar radiation. Here, transient absorption spectroscopy spanning 100 fs-8 µs is used to explore the pH-dependent photochemical pathways for aqueous solutions of p-nitrophenol, chosen as a representative nitroaromatic compound. Broadband ultrafast UV-visible and infrared probes are used to characterize the excited states and intermediate species involved in the multistep photochemistry, and to determine their lifetimes under different pH conditions. The assignment of absorption bands, and the dynamical interpretation of our experimental measurements are supported by computational calculations. After 320 nm photoexcitation to the first bright state, which has 1ππ* character in the Franck-Condon region, and ultrafast (∼200 fs) structural relaxation in the adiabatic S1 state to a region with 1nπ* electronic character, the S1 p-nitrophenol population decays on a time scale of ∼12 ps. This decay involves competition between direct internal conversion to the S0 state (∼40%) and rapid intersystem crossing to the triplet manifold (∼60%). Population in the T1-state decays by excited-state proton transfer (ESPT) to the surrounding water and relaxation of the resulting triplet-state p-nitrophenolate anion to its S0 electronic ground state in ∼5 ns. Reprotonation of the S0-state p-nitrophenolate anion recovers p-nitrophenol in its electronic ground state. Overall recovery of the S0 state of aqueous p-nitrophenol via these competing pathways is close to 100% efficient. The experimental observations help to explain why nitroaromatic compounds such as p-nitrophenol resist photo-oxidative degradation in the environment.

3.
Phys Chem Chem Phys ; 26(39): 25461-25468, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39324231

RESUMO

Thiophene is a prototype for the excited state photophysics that lies at the heart of many technologies within the field of organic electronics. Here, we report a multiphoton ionisation photoelectron imaging study of gas-phase thiophene using a range of photon energies to excite transitions from the ground electronic state to the first two electronically excited singlet states, from the onset of absorption to the absorption maximum. Analysis of the photoelectron spectra and angular distributions reveal features arising from direct photoionisation from the ground electronic state, and resonance-enhanced photoionisation via the electronically excited singlet states. The first two ionisation energies from the ground electronic state were confirmed to be 8.8 eV (adiabatic) and 9.6 eV (vertical). The ionisation energies from the first two electronically excited singlet states were found to be 3.7 eV (adiabatic) and 4.4 eV (vertical).

4.
Phys Chem Chem Phys ; 26(4): 3451-3461, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205824

RESUMO

The phenol molecule is a prototype for non-adiabatic dynamics and the excited-state photochemistry of biomolecules. In this article, we report a joint theoretical and experimental investigation on the resonance enhanced multiphoton ionisation photoelectron (REMPI) spectra of the two lowest ionisation bands of phenol. The focus is on the theoretical interpretation of the measured spectra using quantum dynamics simulations. These were performed by numerically solving the time-dependent Schrödinger equation using the multi-layer variant of the multiconfiguration time-dependent Hartree algorithm together with a vibronic coupling Hamiltonian model. The ionising laser pulse is modelled explicitly within the ionisation continuum model to simulate experimental femtosecond 1+1 REMPI photoelectron spectra. These measured spectra are sensitive to very short lived electronically excited states, providing a rigorous benchmark for our theoretical methods. The match between experiment and theory allows for an interpretation of the features of the spectra at different wavelengths and shows that there are features due to both 'direct' and 'indirect' ionisation, resulting from non-resonant and resonant excitation by the pump pulse.

5.
J Phys Chem A ; 128(35): 7396-7406, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39182189

RESUMO

Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and "on" water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck-Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1-0.2 eV.

6.
Small ; 19(40): e2301014, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37267942

RESUMO

Hybrid organic-inorganic perovskites (HOIPs) have shown great promise in a wide range of optoelectronic applications. However, this performance is inhibited by the sensitivity of HOIPs to various environmental factors, particularly high levels of relative humidity. This study uses X-ray photoelectron spectroscopy (XPS) to determine that there is essentially no threshold to water adsorption on the in situ cleaved MAPbBr3 (001) single crystal surface. Using scanning tunneling microscopy (STM), it shows that the initial surface restructuring upon exposure to water vapor occurs in isolated regions, which grow in area with increasing exposure, providing insight into the initial degradation mechanism of HOIPs. The electronic structure evolution of the surface was also monitored via ultraviolet photoemission spectroscopy (UPS), evidencing an increased bandgap state density following water vapor exposure, which is attributed to surface defect formation due to lattice swelling. This study will help to inform the surface engineering and designs of future perovskite-based optoelectronic devices.

7.
Acc Chem Res ; 55(24): 3631-3640, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36442085

RESUMO

Knowledge of the electronic structure of an aqueous solution is a prerequisite to understanding its chemical and biological reactivity and its response to light. One of the most direct ways of determining electronic structure is to use photoelectron spectroscopy to measure electron binding energies. Initially, photoelectron spectroscopy was restricted to the gas or solid phases due to the requirement for high vacuum to minimize inelastic scattering of the emitted electrons. The introduction of liquid-jets and their combination with intense X-ray sources at synchrotrons in the late 1990s expanded the scope of photoelectron spectroscopy to include liquids. Liquid-jet photoelectron spectroscopy is now an active research field involving a growing number of research groups. A limitation of X-ray photoelectron spectroscopy of aqueous solutions is the requirement to use solutes with reasonably high concentrations in order to obtain photoelectron spectra with adequate signal-to-noise after subtracting the spectrum of water. This has excluded most studies of organic molecules, which tend to be only weakly soluble. A solution to this problem is to use resonance-enhanced photoelectron spectroscopy with ultraviolet (UV) light pulses (hν ≲ 6 eV). However, the development of UV liquid-jet photoelectron spectroscopy has been hampered by a lack of quantitative understanding of inelastic scattering of low kinetic energy electrons (≲5 eV) and the impact on spectral lineshapes and positions.In this Account, we describe the key steps involved in the measurement of UV photoelectron spectra of aqueous solutions: photoionization/detachment, electron transport of low kinetic energy electrons through the conduction band, transmission through the water-vacuum interface, and transport through the spectrometer. We also explain the steps we take to record accurate UV photoelectron spectra of liquids with excellent signal-to-noise. We then describe how we have combined Monte Carlo simulations of electron scattering and spectral inversion with molecular dynamics simulations of depth profiles of organic solutes in aqueous solution to develop an efficient and widely applicable method for retrieving true UV photoelectron spectra of aqueous solutions. The huge potential of our experimental and spectral retrieval methods is illustrated using three examples. The first is a measurement of the vertical detachment energy of the green fluorescent protein chromophore, a sparingly soluble organic anion whose electronic structure underpins its fluorescence and photooxidation properties. The second is a measurement of the vertical ionization energy of liquid water, which has been the subject of discussion since the first X-ray photoelectron spectroscopy measurement in 1997. The third is a UV photoelectron spectroscopy study of the vertical ionization energy of aqueous phenol which demonstrates the possibility of retrieving true photoelectron spectra from measurements with contributions from components with different concentration profiles.


Assuntos
Simulação de Dinâmica Molecular , Água , Espectroscopia Fotoeletrônica , Ânions , Água/química , Raios Ultravioleta
8.
Cochrane Database Syst Rev ; 1: CD013440, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34988973

RESUMO

BACKGROUND: Primary malignant brain tumours can have an unpredictable course, but high-grade gliomas typically have a relentlessly progressive disease trajectory. They can cause profound symptom burden, affecting physical, neurocognitive, and social functioning from an early stage in the illness. This can significantly impact on role function and on the experiences and needs of informal caregivers. Access to specialist palliative and supportive care early in the disease trajectory, for those with high-grade tumours in particular, has the potential to improve patients' and caregivers' quality of life. However, provision of palliative and supportive care for people with primary brain tumours - and their informal caregivers - is historically ill-defined and ad hoc, and the benefits of early palliative interventions have not been confirmed. It is therefore important to define the role and effectiveness of early referral to specialist palliative care services and/or the effectiveness of other interventions focused on palliating disease impact on people and their informal caregivers. This would help guide improvement to service provision, by defining those interventions which are effective across a range of domains, and developing an evidence-based model of integrated supportive and palliative care for this population. OBJECTIVES: To assess the evidence base for early palliative care interventions, including referral to specialist palliative care services compared to usual care, for improving outcomes in adults diagnosed with a primary brain tumour and their carers. SEARCH METHODS: We conducted searches of electronic databases, CENTRAL, MEDLINE, CINAHL, Web of Science, and PsycINFO (last searched 16 November 2021). We conducted searches to incorporate both qualitative and quantitative search terms. In addition to this, we searched for any currently recruiting trials in ClinicalTrials.gov and in the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) search portal, and undertook citation tracking via Scopus. We also handsearched reference lists of potentially eligible systematic review articles to identify any other relevant studies, contacted experts in the field and searched key authors via Web of Science and searched SIGLE (System of Information on Grey Literature in Europe). SELECTION CRITERIA: We included studies looking at early referral to specialist palliative care services - or early targeted palliative interventions by other healthcare professionals - for improving quality of life, symptom control, psychological outcomes, or overall survival as a primary or secondary outcome measure. Studies included randomised controlled trials (RCTs), non-randomised studies (NRS), as well as qualitative and mixed-methods studies where both qualitative and quantitative data were included. Participants were adults with a confirmed radiological and/or histological diagnosis of a primary malignant brain tumour, and/or informal adult carers (either at individual or family level) of people with a primary malignant brain tumour. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methodological procedures for data extraction, management, and analysis. We used GRADE to assess the certainty of the evidence for symptom control, i.e. cognitive function. MAIN RESULTS: We identified 9748 references from the searches, with 8337 remaining after duplicates were removed. After full-text review, we included one trial. There were no studies of early specialist palliative care interventions or of early, co-ordinated generalist palliative care approaches. The included randomised trial addressed a single symptom area, focusing on early cognitive rehabilitation, administered within two weeks of surgery in a mixed brain tumour population, of whom approximately half had a high-grade glioma. The intervention was administered individually as therapist-led computerised exercises over 16 one-hour sessions, four times/week for four weeks. Sessions addressed several cognitive domains including time orientation, spatial orientation, visual attention, logical reasoning, memory, and executive function. There were no between-group differences in outcome for tests of logical-executive function, but differences were observed in the domains of visual attention and verbal memory. Risk of bias was assessed and stated as high for performance bias and attrition bias but for selective reporting it was unclear whether all outcomes were reported. We considered the certainty of the evidence, as assessed by GRADE, to be very low. AUTHORS' CONCLUSIONS: Currently there is a lack of research focusing on the introduction of early palliative interventions specifically for people with primary brain tumours, either as co-ordinated specialist palliative care approaches or interventions focusing on a specific aspect of palliation. Future research should address the methodological shortcomings described in early palliative intervention studies in other cancers and chronic conditions. In particular, the specific population under investigation, the timing and the setting of the intervention should be clearly described and the standardised palliative care-specific components of the intervention should be defined in detail.


Assuntos
Neoplasias Encefálicas , Cuidadores , Adulto , Neoplasias Encefálicas/terapia , Exercício Físico , Humanos , Cuidados Paliativos , Qualidade de Vida
9.
Phys Chem Chem Phys ; 23(35): 19911-19922, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474467

RESUMO

Green fluorescent protein (GFP), together with its family of variants, is the most widely used fluorescent protein for in vivo imaging. Numerous spectroscopic studies of the isolated GFP chromophore have been aimed at understanding the electronic properties of GFP. Here, we build on earlier work [A. V. Bochenkova, C. Mooney, M. A. Parkes, J. Woodhouse, L. Zhang, R. Lewin, J. M. Ward, H. Hailes, L. H. Andersen and H. H. Fielding, Chem. Sci., 2017, 8, 3154] investigating the impact of fluorine and methoxy substituents that have been employed to tune the electronic structure of the GFP chromophore for use as fluorescent RNA tags. We present photoelectron spectra following photoexcitation over a broad range of wavelengths (364-230 nm) together with photoelectron angular distributions following photoexcitation at 364 nm, which are interpreted with the aid of quantum chemistry calculations. The results support the earlier high-level quantum chemistry calculations that predicted how fluorine and methoxy substituents tune the electronic structure and we find evidence to suggest that the methoxy substituents enhance internal conversion, most likely from the 2ππ* state which has predominantly Feshbach resonance character, to the 1ππ* state.


Assuntos
Proteínas de Fluorescência Verde/química , RNA/química , Ânions/química , Teoria da Densidade Funcional , Espectroscopia Fotoeletrônica
10.
Phys Chem Chem Phys ; 22(34): 19022-19032, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32808948

RESUMO

Firefly bioluminescence is exploited widely in imaging in the biochemical and biomedical sciences; however, our fundamental understanding of the electronic structure and relaxation processes of the oxyluciferin that emits the light is still rudimentary. Here, we employ photoelectron spectroscopy and quantum chemistry calculations to investigate the electronic structure and relaxation of a series of model oxyluciferin anions. We find that changing the deprotonation site has a dramatic influence on the relaxation pathway following photoexcitation of higher lying electronically excited states. The keto form of the oxyluciferin anion is found to undergo internal conversion to the fluorescent S1 state, whereas we find evidence to suggest that the enol and enolate forms undergo internal conversion to a dipole bound state, possibly via the fluorescent S1 state. Partially resolved vibrational structure points towards the involvement of out-of-plane torsional motions in internal conversion to the dipole bound state, emphasising the combined electronic and structural role that the microenvironment plays in controlling the electronic relaxation pathway in the enzyme.


Assuntos
Ânions/química , Fenômenos Eletromagnéticos , Indóis/química , Pirazinas/química , Animais , Vaga-Lumes/química , Modelos Químicos , Espectroscopia Fotoeletrônica
11.
Faraday Discuss ; 221(0): 202-218, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31538154

RESUMO

We revisit the photoelectron spectroscopy of aqueous phenol in an effort to improve our understanding of the impact of inhomogeneous broadening and inelastic scattering on solution-phase photoelectron spectra. Following resonance-enhanced multiphoton ionisation via the 11ππ* and 11πσ* states of phenol, we observe 11ππ*-D0/D1 ionisation and competing direct S0-D0/D1 ionisation. Following resonance-enhanced multiphoton ionisation via the 21ππ* state, we observe the signature of solvated electrons. By comparing the photoelectron spectra of aqueous phenol with those of gas-phase phenol, we find that inelastic scattering results in peak shifts with similar values to those that have been observed in photoelectron spectra of solvated electrons, highlighting the need for a robust way of deconvoluting the effect of inelastic scattering from liquid-phase photoelectron spectra. We also present a computational strategy for calculating vertical ionisation energies using a quantum-mechanics/effective fragmentation potential (QM/EFP) approach, in which we find that optimising the configurations obtained from molecular dynamics simulations and using the [phenol·(H2O)5]QM[(H2O)n≥250]EFP (B3LYP/aug-cc-pvdz) method gives good agreement with experiment.

12.
J Phys Chem A ; 123(13): 2709-2718, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30848907

RESUMO

Phenolates and their substituted analogues are important molecular motifs in many biological molecules, including the family of fluorescent proteins based on green fluorescent protein. We have used a combination of anion photoelectron velocity-map imaging measurements and quantum chemistry calculations to probe the electronic structure of the phenolate anion and difluoro- and dimethoxy-substituted analogues. We report vertical detachment energies (VDEs) and quantify the photoelectron angular distributions. The VDEs for phenolate (2.26 ± 0.03 eV, 3.22 ± 0.02 eV) are in agreement with high-resolution measurements, whereas the values for the substituted analogues (2.61 ± 0.03 eV for difluorophenolate; ∼2.35 eV for dimethoxyphenolate) are new measurements. We also report adiabatic excitation energies (AEEs) of anion resonances and discuss their contributions to the overall photoelectron angular distributions. The AEE of the lowest lying resonance in phenolate (∼3.36 eV) is consistent with previous measurements, whereas the value for the next resonance (∼3.7 eV) is a new measurement. The AEEs of the resonances in the substituted analogues (∼3.74 eV for difluorophenolate; ∼3.4 and 3.74 eV for dimethoxyphenolate) are new measurements.

13.
Chem Soc Rev ; 47(2): 309-321, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29168864

RESUMO

Time-resolved photoelectron spectroscopy measurements combined with quantum chemistry and dynamics calculations allow unprecedented insight into the electronic relaxation mechanisms of photoexcited molecules in the gas-phase. In this Tutorial Review, we explain the essential concepts linking photoelectron spectroscopy measurements with electronic structure and how key features on the potential energy landscape are identified using quantum chemistry and quantum dynamics calculations. We illustrate how time-resolved photoelectron spectroscopy and theory work together using examples ranging in complexity from the prototypical organic molecule benzene to a pyrrole dimer bound by a weak N-Hπ interaction and the green fluorescent protein chromophore.

14.
Phys Chem Chem Phys ; 20(22): 15543-15549, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29808860

RESUMO

Indole is an important molecular motif in many biological molecules and exists in its deprotonated anionic form in the cyan fluorescent protein, an analogue of green fluorescent protein. However, the electronic structure of the deprotonated indole anion has been relatively unexplored. Here, we use a combination of anion photoelectron velocity-map imaging measurements and quantum chemistry calculations to probe the electronic structure of the deprotonated indole anion. We report vertical detachment energies (VDEs) of 2.45 ± 0.05 eV and 3.20 ± 0.05 eV, respectively. The value for D0 is in agreement with recent high-resolution measurements whereas the value for D1 is a new measurement. We find that the first electronically excited singlet state of the anion, S1(ππ*), lies above the VDE and has shape resonance character with respect to the D0 detachment continuum and Feshbach resonance character with respect to the D1 continuum.

15.
J Phys Chem A ; 122(41): 8222-8228, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30234981

RESUMO

The photocycle of photoactive yellow protein (PYP) is initiated by a photoinduced trans-cis isomerization around a C═C bond in the chromophore that lies at the heart of the protein; however, in addition to the desired photochemical pathway, the chromophore can undergo competing electronic relaxation processes. Here we combine gas-phase anion photoelectron spectroscopy and quantum chemistry calculations to investigate how locking the C═C bond in the chromophore controls the competition between these electronic relaxation processes following photoexcitation in the range 400-310 nm. We find evidence to suggest that preventing trans-cis isomerization effectively turns off internal conversion to the ground electronic state and enhances electron emission from the first electronically excited state.


Assuntos
Proteínas de Bactérias/química , Processos Fotoquímicos , Fotorreceptores Microbianos/química , Isomerismo , Espectroscopia Fotoeletrônica , Raios Ultravioleta
16.
Phys Chem Chem Phys ; 19(47): 31572-31580, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29165495

RESUMO

The photocycle of photoactive yellow protein (PYP) begins with small-scale torsional motions of the chromophore leading to large-scale movements of the protein scaffold triggering a biological response. The role of single-bond torsional molecular motions of the chromophore in the initial steps of the PYP photocycle are not fully understood. Here, we employ anion photoelectron spectroscopy measurements and quantum chemistry calculations to investigate the electronic relaxation dynamics following photoexcitation of four model chromophores, para-coumaric acid, its methyl ester, and two analogues with aliphatic bridges hindering torsional motions around the single bonds adjacent to the alkene group. Following direct photoexcitation of S1 at 400 nm, we find that both single bond rotations play a role in steering the PYP chromophore through the S1/S0 conical intersection but that rotation around the single bond between the alkene moiety and the phenoxide group is particularly important. Following photoexcitation of higher lying electronic states in the range 346-310 nm, we find that rotation around the single bond between the alkene and phenoxide groups also plays a key role in the electronic relaxation from higher lying states to the S1 state. These results have potential applications in tuning the photoresponse of photoactive proteins and materials with chromophores based on PYP.


Assuntos
Proteínas de Bactérias/química , Processos Fotoquímicos , Fotorreceptores Microbianos/química , Eletroquímica , Modelos Moleculares , Espectroscopia Fotoeletrônica , Rotação
17.
Phys Chem Chem Phys ; 19(34): 22711-22720, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28820195

RESUMO

The electronic structure and excited-state dynamics of the ubiquitous bioluminescent probe luciferin and its furthest red-shifted analogue infraluciferin have been investigated using photoelectron spectroscopy and quantum chemistry calculations. In our electrospray ionization source, the deprotonated anions are formed predominantly in their phenolate forms and are directly relevant to studies of luciferin and infraluciferin as models for their unstable oxyluciferin and oxyinfraluciferin emitters. Following photoexcitation in the range 357-230 nm, we find that internal conversion from high-lying excited states to the S1(1ππ*) state competes efficiently with electron detachment. In infraluciferin, we find that decarboxylation also competes with direct electron detachment and internal conversion. This detailed spectroscopic and computational study defines the electronic structure and electronic relaxation processes of luciferin and infraluciferin and will inform the design of new bioluminescent systems and applications.

18.
Phys Chem Chem Phys ; 18(15): 10329-36, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27025529

RESUMO

Understanding how the interactions between a chromophore and its surrounding protein control the function of a photoactive protein remains a challenge. Here, we present the results of photoelectron spectroscopy measurements and quantum chemistry calculations aimed at investigating how substitution at the coumaryl tail of the photoactive yellow protein chromophore controls competing relaxation pathways following photoexcitation of isolated chromophores in the gas phase with ultraviolet light in the range 350-315 nm. The photoelectron spectra are dominated by electrons resulting from direct detachment and fast detachment from the 2(1)ππ* state but also have a low electron kinetic energy component arising from autodetachment from lower lying electronically excited states or thermionic emission from the electronic ground state. We find that substituting the hydrogen atom of the carboxylic acid group with a methyl group lowers the threshold for electron detachment but has very little effect on the competition between the different relaxation pathways, whereas substituting with a thioester group raises the threshold for electron detachment and appears to 'turn off' the competing electron emission processes from lower lying electronically excited states. This has potential implications in terms of tuning the light-induced electron donor properties of photoactive yellow protein.


Assuntos
Proteínas de Bactérias/química , Ácidos Cumáricos/química , Elétrons , Análise Espectral/métodos
19.
Phys Chem Chem Phys ; 17(25): 16270-6, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25990435

RESUMO

Femtosecond time-resolved photoelectron spectroscopy experiments have been used to compare the electronic relaxation dynamics of aniline and d7-aniline following photoexcitation in the range 272-238 nm. Together with the results of recent theoretical investigations of the potential energy landscape [M. Sala, O. M. Kirkby, S. Guérin and H. H. Fielding, Phys. Chem. Chem. Phys., 2014, 16, 3122], these experiments allow us to resolve a number of unanswered questions surrounding the nonradiative relaxation mechanism. We find that tunnelling does not play a role in the electronic relaxation dynamics, which is surprising given that tunnelling plays an important role in the electronic relaxation of isoelectronic phenol and in pyrrole. We confirm the existence of two time constants associated with dynamics on the 1(1)πσ* surface that we attribute to relaxation through a conical intersection between the 1(1)πσ* and 1(1)ππ* states and motion on the 1(1)πσ* surface. We also present what we believe is the first report of an experimental signature of a 3-state conical intersection involving the 2(1)ππ*, 1(1)πσ* and 1(1)ππ* states.

20.
Angew Chem Int Ed Engl ; 54(19): 5646-9, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25782419

RESUMO

To understand how photoactive proteins function, it is necessary to understand the photoresponse of the chromophore. Photoactive yellow protein (PYP) is a prototypical signaling protein. Blue light triggers trans-cis isomerization of the chromophore covalently bound within PYP as the first step in a photocycle that results in the host bacterium moving away from potentially harmful light. At higher energies, photoabsorption has the potential to create radicals and free electrons; however, this process is largely unexplored. Here, we use photoelectron spectroscopy and quantum chemistry calculations to show that the molecular structure and conformation of the isolated PYP chromophore can be exploited to control the competition between trans-cis isomerization and radical formation. We also find evidence to suggest that one of the roles of the protein is to impede radical formation in PYP by preventing torsional motion in the electronic ground state of the chromophore.


Assuntos
Proteínas de Bactérias/química , Ácidos Cumáricos/síntese química , Ácidos Cumáricos/química , Radicais Livres/síntese química , Radicais Livres/química , Halorhodospira halophila/química , Processos Fotoquímicos , Teoria Quântica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA