Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 27(3): 616-27, 2014 03.
Artigo em Inglês | MEDLINE | ID: mdl-26227899

RESUMO

Admixture, the mixing of historically isolated gene pools, can have immediate consequences for the genetic architecture of fitness traits. Admixture may be especially important for newly colonized populations, such as during range expansion and species invasions, by generating heterozygosity that can boost fitness through heterosis. Despite widespread evidence for admixture during species invasions, few studies have examined the demographic history leading to admixture, how admixture affects the heterozygosity and fitness of invasive genotypes, and whether such fitness effects are maintained through time. We address these questions using the invasive plant Silene vulgaris, which shows evidence of admixture in both its native Europe and in North America where it has invaded. Using multilocus genotype data in conjunction with approximate Bayesian computation analysis of demographic history, we showed that admixture during the invasion of North America was independent from and much younger than admixture in the native range of Europe. We tested for fitness consequences of admixture in each range and detected a significant positive heterozygosity-fitness correlation (HFC) in North America; in contrast, no HFC was present in Europe. The lack of HFC in Europe may reflect the longer time since admixture in the native range, dissipating associations between heterozygosity at markers and fitness loci. Our results support a key short-term role for admixture during the early stages of invasion by generating HFCs that carry populations past the threat of extinction from inbreeding and demographic stochasticity.


Assuntos
Heterozigoto , Espécies Introduzidas , Teorema de Bayes
2.
Heredity (Edinb) ; 112(2): 99-104, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24002238

RESUMO

Non-random association of alleles in the nucleus and cytoplasmic organelles, or cyto-nuclear linkage disequilibrium (LD), is both an important component of a number of evolutionary processes and a statistical indicator of others. The evolutionary significance of cyto-nuclear LD will depend on both its magnitude and how stable those associations are through time. Here, we use a longitudinal population genetic data set to explore the magnitude and temporal dynamics of cyto-nuclear disequilibria through time. We genotyped 135 and 170 individuals from 16 and 17 patches of the plant species Silene latifolia in Southwestern VA, sampled in 1993 and 2008, respectively. Individuals were genotyped at 14 highly polymorphic microsatellite markers and a single-nucleotide polymorphism (SNP) in the mitochondrial gene, atp1. Normalized LD (D') between nuclear and cytoplasmic loci varied considerably depending on which nuclear locus was considered (ranging from 0.005-0.632). Four of the 14 cyto-nuclear associations showed a statistically significant shift over approximately seven generations. However, the overall magnitude of this disequilibrium was largely stable over time. The observed origin and stability of cyto-nuclear LD is most likely caused by the slow admixture between anciently diverged lineages within the species' newly invaded range, and the local spatial structure and metapopulation dynamics that are known to structure genetic variation in this system.


Assuntos
Núcleo Celular/genética , Citoplasma/genética , Genoma de Planta , Desequilíbrio de Ligação , Silene/genética , Genes Mitocondriais , Heterogeneidade Genética , Genética Populacional , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA