Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
PLoS Pathog ; 18(6): e1010089, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35687592

RESUMO

Whether to commit limited cellular resources toward growth and proliferation, or toward survival and stress responses, is an essential determination made by Target of Rapamycin Complex 1 (TORC1) for a eukaryotic cell in response to favorable or adverse conditions. Loss of TORC1 function is lethal. The TORC1 inhibitor rapamycin that targets the highly conserved Tor kinase domain kills fungal pathogens like Candida albicans, but is also severely toxic to human cells. The least conserved region of fungal and human Tor kinases are the N-terminal HEAT domains. We examined the role of the 8 most N-terminal HEAT repeats of C. albicans Tor1. We compared nutritional- and stress responses of cells that express a message for N-terminally truncated Tor1 from repressible tetO, with cells expressing wild type TOR1 from tetO or from the native promoter. Some but not all stress responses were significantly impaired by loss of Tor1 N-terminal HEAT repeats, including those to oxidative-, cell wall-, and heat stress; in contrast, plasma membrane stress and antifungal agents that disrupt plasma membrane function were tolerated by cells lacking this Tor1 region. Translation was inappropriately upregulated during oxidative stress in cells lacking N-terminal Tor1 HEAT repeats despite simultaneously elevated Gcn2 activity, while activation of the oxidative stress response MAP kinase Hog1 was weak. Conversely, these cells were unable to take advantage of favorable nutritional conditions by accelerating their growth. Consuming oxygen more slowly than cells containing wild type TOR1 alleles during growth in glucose, cells lacking N-terminal Tor1 HEAT repeats additionally were incapable of utilizing non-fermentable carbon sources. They were also hypersensitive to inhibitors of specific complexes within the respiratory electron transport chain, suggesting that inefficient ATP generation and a resulting dearth of nucleotide sugar building blocks for cell wall polysaccharides causes cell wall integrity defects in these mutants. Genome-wide expression analysis of cells lacking N-terminal HEAT repeats showed dysregulation of carbon metabolism, cell wall biosynthetic enzymes, translational machinery biosynthesis, oxidative stress responses, and hyphal- as well as white-opaque cell type-associated genes. Targeting fungal-specific Tor1 N-terminal HEAT repeats with small molecules might selectively abrogate fungal viability, especially when during infection multiple stresses are imposed by the host immune system.


Assuntos
Candida albicans , Proteínas Fúngicas , Candida albicans/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Hifas , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000442

RESUMO

Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and ß-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.


Assuntos
Membrana Celular , ATPases Translocadoras de Prótons , Humanos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Permeabilidade da Membrana Celular/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Defensinas/farmacologia , Defensinas/metabolismo , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/metabolismo , beta-Defensinas/metabolismo , beta-Defensinas/farmacologia , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Potássio/metabolismo , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos
3.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39273619

RESUMO

Human lactoferrin (hLf) is an innate host defense protein that inhibits microbial H+-ATPases. This protein includes an ancestral structural motif (i.e., γ-core motif) intimately associated with the antimicrobial activity of many natural Cys-rich peptides. Peptides containing a complete γ-core motif from hLf or other phylogenetically diverse antimicrobial peptides (i.e., afnA, SolyC, PA1b, PvD1, thanatin) showed microbicidal activity with similar features to those previously reported for hLf and defensins. Common mechanistic characteristics included (1) cell death independent of plasma membrane (PM) lysis, (2) loss of intracellular K+ (mediated by Tok1p K+ channels in yeast), (3) inhibition of microbicidal activity by high extracellular K+, (4) influence of cellular respiration on microbicidal activity, (5) involvement of mitochondrial ATP synthase in yeast cell death processes, and (6) increment of intracellular ATP. Similar features were also observed with the BM2 peptide, a fungal PM H+-ATPase inhibitor. Collectively, these findings suggest host defense peptides containing a homologous γ-core motif inhibit PM H+-ATPases. Based on this discovery, we propose that the γ-core motif is an archetypal effector involved in the inhibition of PM H+-ATPases across kingdoms of life and contributes to the in vitro microbicidal activity of Cys-rich antimicrobial peptides.


Assuntos
Motivos de Aminoácidos , ATPases Translocadoras de Prótons , Humanos , ATPases Translocadoras de Prótons/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Lactoferrina/farmacologia , Lactoferrina/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cisteína/metabolismo , Cisteína/química , Candida albicans/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos
4.
Chemistry ; 25(64): 14644-14650, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31424126

RESUMO

Density functional theory (DFT) studies of the interaction between graphene sheets and nitrile oxides have proved the feasibility of the reaction through 1,3-dipolar cycloaddition. The viability of the approach has been also confirmed experimentally through the cycloaddition of few-layer exfoliated graphene and nitrile oxides containing functional organic groups with different electronic nature. The cycloaddition reaction has been successfully achieved in one-pot from the corresponding oximes under microwave (MW) irradiation. The successful formation of the isoxazoline ring has been confirmed by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS).

5.
Int J Mol Sci ; 20(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757076

RESUMO

In yeast, we reported the critical role of K+-efflux for the progress of the regulated cell death (RCD) induced by human lactoferrin (hLf), an antimicrobial protein of the innate immune system that blocks Pma1p H+-ATPase. In the present study, the K+ channel Tok1p was identified as the K+ channel-mediating K+-efflux, as indicated by the protective effect of extracellular K+ (30 mM), K+-channel blockers, and the greater hLf-resistance of TOK1-disrupted strains. K+-depletion was necessary but not sufficient to induce RCD as inferred from the effects of valinomycin, NH4Cl or nigericin which released a percentage of K+ similar to that released by lactoferrin without affecting cell viability. Cytosolic pH of hLf-treated cells decreased transiently (0.3 pH units) and its inhibition prevented the RCD process, indicating that cytosolic acidification was a necessary and sufficient triggering signal. The blocking effect of lactoferrin on Pma1p H+-ATPase caused a transitory decrease of cytosolic pH, and the subsequent membrane depolarization activated the voltage-gated K+ channel, Tok1p, allowing an electrogenic K+-efflux. These ionic events, cytosolic accumulation of H+ followed by K+-efflux, constituted the initiating signals of this mitochondria-mediated cell death. These findings suggest, for the first time, the existence of an ionic signaling pathway in RCD.


Assuntos
Apoptose , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Canais de Potássio/metabolismo , Bombas de Próton/metabolismo , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Lactoferrina/farmacologia , Transdução de Sinais
6.
Anal Chem ; 90(1): 968-973, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29186953

RESUMO

Carbapenem-resistant Enterobacteriaceae have recently become an important cause of morbidity and mortality due to healthcare-associated infections. Most commonly used diagnostic methods are incompatible with fast and accurate directed therapy. We report here the direct identification of the blaOXA48 gene, which codes for the carbapenemase OXA-48, in lysate samples from Klebsiella pneumoniae. The method is PCR-free and label-free. It is based on the measurement of changes in the stiffness of DNA self-assembled monolayers anchored to microcantilevers that occur as a consequence of the hybridization. The stiffness of the DNA layer is measured through changes of the sensor resonance frequency upon hybridization and at varying relative humidity.


Assuntos
Técnicas Biossensoriais/métodos , DNA Bacteriano/análise , DNA de Cadeia Simples/genética , beta-Lactamases/genética , Técnicas Biossensoriais/instrumentação , DNA Bacteriano/genética , Klebsiella pneumoniae/enzimologia , Fenômenos Mecânicos , Hibridização de Ácido Nucleico
7.
Chemistry ; 24(13): 3305-3313, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29314370

RESUMO

Commercial carbon fibers can be used as electrodes with high conductive surfaces in reduced devices. Oxidative treatment of such electrodes results in a chemically robust material with high catalytic activity for electrochemical proton reduction, enabling the measurement of quantitative faradaic yields (>95 %) and high current densities. Combination of experiments and DFT calculations reveals that the presence of carboxylic groups triggers such electrocatalytic activity in a bioinspired manner. Analogously to the known Hantzsch esters, the oxidized carbon fiber material is able to transfer hydrides, which can react with protons, generating H2 , or with organic substrates resulting in their hydrogenation. A plausible mechanism is proposed based on DFT calculations on model systems.

8.
Antimicrob Agents Chemother ; 60(7): 4206-16, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27139463

RESUMO

Human lactoferrin (hLf) is a protein of the innate immune system which induces an apoptotic-like process in yeast. Determination of the susceptibility to lactoferrin of several yeast species under different metabolic conditions, respiratory activity, cytoplasmic ATP levels, and external medium acidification mediated by glucose assays suggested plasma membrane Pma1p (P3A-type ATPase) as the hLf molecular target. The inhibition of plasma membrane ATPase activity by hLf and the identification of Pma1p as the hLf-binding membrane protein confirmed the previous physiological evidence. Consistent with this, cytoplasmic ATP levels progressively increased in hLf-treated Candida albicans cells. However, oligomycin, a specific inhibitor of the mitochondrial F-type ATPase proton pump (mtATPase), abrogated the antifungal activity of hLf, indicating a crucial role for mtATPase in the apoptotic process. We suggest that lactoferrin targeted plasma membrane Pma1p H(+)-ATPase, perturbing the cytoplasmic ion homeostasis (i.e., cytoplasmic H(+) accumulation and subsequent K(+) efflux) and inducing a lethal mitochondrial dysfunction. This initial event involved a normal mitochondrial ATP synthase activity responsible for both the ATP increment and subsequent hypothetical mitochondrial proton flooding process. We conclude that human lactoferrin inhibited Pma1p H(+)-ATPase, inducing an apoptotic-like process in metabolically active yeast. Involvement of mitochondrial H(+)-ATPase (nonreverted) was essential for the progress of this programmed cell death in which the ionic homeostasis perturbation seems to precede classical nonionic apoptotic events.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Membrana Celular/enzimologia , Lactoferrina/farmacologia , ATPases Translocadoras de Prótons/metabolismo , Apoptose/efeitos dos fármacos
9.
Chemistry ; 22(26): 8879-88, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27168484

RESUMO

The synthesis of functionalised carbon nanotubes as receptors for riboflavin (RBF) is reported. Carbon nanotubes, both single-walled and multi-walled, have been functionalised with 1,3,5-triazines and p-tolyl chains by aryl radical addition under microwave irradiation and the derivatives have been fully characterised by using a range of techniques. The interactions between riboflavin and the hybrids were analysed by using fluorescence and UV/Vis spectroscopic techniques. The results show that the attached functional groups minimise the π-π stacking interactions between riboflavin and the nanotube walls. Comparison of p-tolyl groups with the triazine groups shows that the latter have stronger interactions with riboflavin because of the presence of hydrogen bonds. Moreover, the triazine derivatives follow the Stern-Volmer relationship and show a high association constant with riboflavin. In this way, artificial receptors in catalytic processes could be designed through specific control of the interaction between functionalised carbon nanotubes and riboflavin.


Assuntos
Nanotubos de Carbono/química , Riboflavina/química , Triazinas/química , Catálise , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão , Micro-Ondas , Espectroscopia Fotoeletrônica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Termogravimetria
10.
Phys Chem Chem Phys ; 18(3): 1828-37, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26678457

RESUMO

The covalent coupling between oligo(thienylenevinylenes) (nTVs) and carbon nanohorns (CNHs) has been investigated. The resulting nanohybrids have been characterized by a combination of several techniques, including thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. The photophysical properties of the new hybrids were investigated by steady-state and time-resolved spectroscopic techniques. A transient signal characterized by two kinetic regimes, one short decay within 0.5 µs corresponding to around 80% of the total signal and another much longer-lived decay of 10 µs, has been detected. The transient absorption spectra are characterized by a continuous absorption that increases in intensity towards shorter wavelengths, with a maximum at 430 nm. These transient signals have been assigned to the charge-separated state delocalized on CNHs based on the quenching behavior and by comparison with the photophysical properties of nTV in the absence and presence of quenchers. The photophysical behavior of covalent nTV-CNH conjugates with microsecond transients due to electrons and holes on CNHs contrasts with the absence of any transient for analogous nTV-C60 conjugates, for which charge separation was not observed at timescales longer than nanoseconds. The photochemical behavior of CNHs is believed to derive from the amphoteric (electron donor and acceptor) properties of CNHs and from the larger number of carbon atoms (efficient delocalization) in CNHs compared with C60.

11.
Phys Chem Chem Phys ; 18(42): 29582-29590, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27752671

RESUMO

After the feasibility of the 1,3-dipolar cycloaddition reaction between nitrile imines and exfoliated graphene by density functional theory calculations was proved, very few-layer graphene was effectively functionalized using this procedure. Hydrazones with different electronic properties were used as precursors for the 1,3-dipoles, and microwave irradiation as an energy source enabled the reaction to be performed in a few minutes. The anchoring of organic addends on the graphene surface was confirmed by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis. Ultraviolet photoelectron spectroscopy (UPS) was used to measure the work function and band gap of these new hybrids. Our results demonstrate that it is possible to modulate these important electronic valence band parameters by tailoring the electron richness of the organic addends and/or the degree of functionalization.

12.
Molecules ; 21(4): 401, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27023502

RESUMO

The effect of temperature and water/thiourea ratio on the growth, crystallinity and morphological characteristics of CdS nanostructures synthetized by a solvothermal method using ethylenediamine as solvent were studied. The temperature and water/thiourea ratio used in the synthesis determine the surface area, shape, length and degree of crystallinity of the CdS nanostructures obtained. Nanowires of high crystallinity and length were obtained when the solvothermal synthesis was performed at 190 °C, while nanorods with lower length and crystallinity were obtained as the solvothermal temperature decreased to 120 °C. The change in the water/thiourea ratio affects the crystallinity and length of the CdS nanostructures to a lesser extent than temperature. Nevertheless an increase in the water/thiourea ratio used during the solvothermal synthesis resulted in CdS nanorods with higher crystallinity, lower aspect ratio and lower specific surface area. Textural, structural and surface properties of the prepared CdS nanostructures were determined and related to the activity results in the production of hydrogen from aqueous solutions containing SO3(2-) + S(2-) under visible light.


Assuntos
Compostos de Cádmio/química , Hidrogênio/química , Solventes/química , Água/química , Luz , Nanotubos/química , Nanofios/química , Fotoquímica , Sulfetos/química , Propriedades de Superfície , Temperatura , Tioureia/química
13.
Chemphyschem ; 15(1): 100-8, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24265140

RESUMO

Double-wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties of these modified DWCNTs are then compared with an analogous sample based on single-wall carbon nanotubes (SWCNTs). Raman spectroscopy shows the presence of characteristic radial breathing mode vibrations, confirming that the samples partly retain the integrity of the nanotubes in the case of DWCNTs, including the internal and external nanotubes. Quantification of the pyridyl content for both samples (DWCNT and SWCNT derivatives) is based on X-ray photoelectron spectroscopy and thermogravimetric profiles, showing very similar substituent load. Both pyridyl-containing nanotubes (DWCNTs and SWCNTs) form a complex with zinc porphyrin (ZnP), as evidenced by the presence of two isosbestic points in the absorption spectra of the porphyrin upon addition of the pyridyl-functionalized nanotubes. Supramolecular complexes based on pyridyl-substituted DWCNTs and SWCNTs quench the emission and the triplet excited state identically, through an energy-transfer mechanism based on pre-assembly of the ground state. Thus, the presence of the intact inner wall in DWCNTs does not influence the quenching behavior, with respect to SWCNTs, for energy-transfer quenching with excited ZnP. These results sharply contrast with previous ones referring to electron-transfer quenching, in which the double-wall morphology of the nanotubes has been shown to considerably reduce the lifetime of charge separation, owing to faster electron mobility in DWCNTs compared to SWCNTs.

14.
Chemphyschem ; 14(17): 4002-9, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24166869

RESUMO

We study the effect of oxidative impurities on the properties of graphene oxide and on the graphene oxide Langmuir-Blodgett films (LB). The starting material was grupo Antolín nanofibers (GANF) and the oxidation process was a modified Hummers method to obtain highly oxidized graphene oxide. The purification procedure reported in this work eliminated oxidative impurities decreasing the thickness of the nanoplatelets. The purified material thus obtained presents an oxidation degree similar to that achieved by chemical reduction of the graphite oxide. The purified and non-purified graphene oxides were deposited onto silicon by means of a Langmuir-Blodgett (LB) methodology. The morphology of the LB films was analyzed by field emission scanning microscopy (FE-SEM) and micro-Raman spectroscopy. Our results show that the LB films built by transferring Langmuir monolayers at the liquid-expanded state of the purified material are constituted by close-packed and non-overlapped nanoplatelets. The isotherms of the Langmuir monolayer precursor of the LB films were interpreted according to the Volmer's model.

15.
Biomacromolecules ; 14(3): 626-36, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23360180

RESUMO

The purpose of this study is to investigate the combined effects of oxygen plasma treatments and silver nanoparticles (Ag) on PLGA in order to modulate the surface antimicrobial properties through tunable bacteria adhesion mechanisms. PLGA nanocomposite films, produced by solvent casting with 1 wt % and 7 wt % of Ag nanoparticles were investigated. The PLGA and PLGA/Ag nanocomposite surfaces were treated with oxygen plasma. Surface properties of PLGA were investigated by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), static contact angle (CA), and high resolution X-ray photoelectron spectroscopy (XPS). Antibacterial tests were performed using an Escherichia coli RB (a Gram negative) and Staphylococcus aureus 8325-4 (a Gram positive). The PLGA surface becomes hydrophilic after the oxygen treatment and its roughness increases with the treatment time. The surface treatment and the Ag nanoparticle introduction have a dominant influence on the bacteria adhesion and growth. Oxygen-treated PLGA/Ag systems promote higher reduction of the bacteria viability in comparison to the untreated samples and neat PLGA. The combination of Ag nanoparticles with the oxygen plasma treatment opens new perspectives for the studied biodegradable systems in biomedical applications.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ácido Láctico/química , Ácido Láctico/farmacologia , Nanopartículas Metálicas/química , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Prata/química , Aderência Bacteriana , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanocompostos/química , Oxigênio/sangue , Oxigênio/química , Espectroscopia Fotoeletrônica , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Prata/análise , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
16.
Chemistry ; 18(52): 16922-30, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23136036

RESUMO

Single- and double-wall carbon nanotubes (CNTs) having dimethylanilino (DMA) units covalently attached to the external graphene wall have been prepared by the reaction of the dimethylaminophenylnitronium ion with the corresponding CNT. The samples have been characterized by Raman and XPS spectroscopies, thermogravimetry, and high-resolution transmission electron microscopy in which the integrity of the single or double wall of the CNT and the percentage of substitution (one dimethylanilino group every 45 carbons of the wall for the single- and double-wall samples) has been determined. Nanosecond laser flash photolysis has shown the generation of transients that has been derived from the charge transfer between the dimethylanilino (as the electron donor) to the CNT graphene wall (as the electron acceptor). Importantly, the lifetime of the double-wall CNT is much shorter than that monitored for the single-wall CNT. Shorter-lived transients were also observed for the pentyl-esterified functionalized double-wall CNT with respect to the single-wall analogue in the presence of hole (CH(3)OH) and electron quenchers (O(2), N(2)O), which has led to the conclusion that the inner, intact graphene wall that is present in double-wall CNT increases the charge mobility significantly, favoring charge recombination processes. Considering the importance that charge mobility has in microelectronics, our finding suggests that double-wall CNT or two-layer graphene may be more appropriate to develop devices needing fast charge mobility.

17.
Chemphyschem ; 13(16): 3682-90, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-22890873

RESUMO

Films of a few layers in thickness of reduced graphite oxide (RGO) sheets functionalized by the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDPS) are obtained by using the Langmuir-Blodgett method. The quality of the RGO sheets is checked by analyzing the degrees of reduction and defect repair by means of X-ray photoelectron spectroscopy, atomic force microscopy (AFM), field-emission scanning electron microscopy (SEM), micro-Raman spectroscopy, and electrical conductivity measurements. A modified Hummers method is used to obtain highly oxidized graphite oxide (GO) together with a centrifugation-based method to improve the quality of GO. The GO samples are reduced by hydrazine or vitamin C. Functionalization of RGO with the zwitterionic surfactant improves the degrees of reduction and defect repair of the two reducing agents and significantly increases the electrical conductivity of paperlike films compared with those prepared from unfunctionalized RGO.


Assuntos
Grafite/química , Óxidos/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Condutividade Elétrica , Microscopia de Força Atômica , Oxirredução , Espectroscopia Fotoeletrônica , Análise Espectral Raman
18.
Int J Biol Macromol ; 202: 309-317, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35038474

RESUMO

Lactoferrin (Lf) is a versatile natural milk-derived protein that exhibits multiple interesting biological activities. Since it is safe for human administration and currently manufactured using low cost and well-established large-scale processes, the Lf scientific community has been devoted at dissecting its mechanisms of action towards its more rational and efficient use for various applications. Emerging literature has identified proton pumping ATPases as molecular targets of Lf in different cellular models linked to distinct activities of this natural protein. Information on this subject has not been systematically analysed before, hence herein we review the current state of art on the effect of Lf on proton pumping ATPases. Though structurally different, we propose that Lf holds a proton pump inhibitor (PPI)-like activity based on the functional resemblance with the classical inhibitors of the stomach H+/K+-ATPase. The downstream events and outcomes of the PPI-like activity of Lf, as well as its impact for the development of improved Lf applications are also discussed.


Assuntos
Lactoferrina , Inibidores da Bomba de Prótons , Humanos , Lactoferrina/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Inibidores da Bomba de Prótons/uso terapêutico
19.
Sci Total Environ ; 810: 152003, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856283

RESUMO

The rise of multiresistant bacterial pathogens is currently one of the most critical threats to global health, encouraging a better understanding of the evolution and spread of antimicrobial resistance. In this regard, the role of the environment as a source of resistance mechanisms remains poorly understood. Moreover, we still know a minimal part of the microbial diversity and resistome present in remote and extreme environments, hosting microbes that evolved to resist harsh conditions and thus a potentially rich source of novel resistance genes. This work demonstrated that the Antarctic Peninsula soils host a remarkable microbial diversity and a widespread presence of autochthonous antibiotic-resistant bacteria and resistance genes. We observed resistance to a wide array of antibiotics among isolates, including Pseudomonas resisting ten or more different compounds, with an overall increased resistance in bacteria from non-intervened areas. In addition, genome analysis of selected isolates showed several genes encoding efflux pumps, as well as a lack of known resistance genes for some of the resisted antibiotics, including colistin, suggesting novel uncharacterized mechanisms. By combining metagenomic approaches based on analyzing raw reads, assembled contigs, and metagenome-assembled genomes, we found hundreds of widely distributed genes potentially conferring resistance to different antibiotics (including an outstanding variety of inactivation enzymes), metals, and biocides, hosted mainly by Polaromonas, Pseudomonas, Streptomyces, Variovorax, and Burkholderia. Furthermore, a proportion of these genes were found inside predicted plasmids and other mobile elements, including a putative OXA-like carbapenemase from Polaromonas harboring conserved key residues and predicted structural features. All this evidence indicates that the Antarctic Peninsula soil microbiota has a broad natural resistome, part of which could be transferred horizontally to pathogenic bacteria, acting as a potential source of novel resistance genes.


Assuntos
Microbiota , Solo , Regiões Antárticas , Antibacterianos , Genes Bacterianos , Metagenoma , Metagenômica , Microbiota/genética
20.
Small ; 7(5): 665-74, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21290599

RESUMO

Single-walled carbon nanotubes (SWNTs) can be successfully cut with relatively homogeneous sizes using a planetary mill. The optimized conditions produce highly dispersible SWNTs that can be efficiently functionalized in a variety of synthetic ways. As clearly shown by Raman spectroscopy, the milling/cutting procedure compares very favorably with the most common way of purifying SWNTs, namely, treatment with strong oxidizing acids. Moreover a similar milling process can be used to functionalize and cut pristine SWNTs by one-step nitrene chemistry.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Iminas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA