Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Environ Manage ; 270: 110271, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721277

RESUMO

Gully development following agricultural land use change is well documented in many tropical developing countries. However, the impact of specific agricultural intensification practices on gully formation, such as the construction of unpaved roads and contour terracing, remains poorly understood. We studied gully formation in catchments with sugarcane agriculture to inform sustainable agricultural management in Brazil. Through field surveys in ten first-to second-order catchments, we mapped erosional features and described gullying along an incision gradient from rill, to ephemeral and permanent gullies. We documented formation of >130 erosional features that concentrated mainly (96%) on dirt roads along the outer margins of streamside vegetation and bordering transitions from hillslope to hollow. We further established a slope-contributing area threshold for gullying, highlighting high susceptibility to gully formation on dirt roads and contour terraces. Key implications of our findings include targeted enhancements of riparian buffers that extend beyond concave topographies as well as the use of topographic thresholds as a benchmark for gully formation along dirt roads in Brazilian sugarcane fields.


Assuntos
Saccharum , Agricultura , Brasil , Solo
2.
J Environ Manage ; 206: 980-988, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29223108

RESUMO

Sugarcane is a widespread bioenergy crop in tropical regions, and the growing global demand for renewable energy in recent years has led to a dramatic expansion and intensification of sugarcane agriculture in Brazil. Currently, extensive areas of low-intensity pasture are being converted to sugarcane, while management in the remaining pasture is becoming more intensive, i.e., includes tilling and fertilizer use. In this study, we assessed how such changes in land use and management practices alter emissions of greenhouse gases (GHG) such as CO2, N2O and CH4 by measuring in situ fluxes for one year after conversion from low-intensity pasture to conventional sugarcane agriculture and management-intensive pasture. Results show that CO2 and N2O fluxes increased significantly in pasture and sugarcane with tillage, fertilizer use, or both combined. Emissions were highly variable for all GHGs, yet, cumulatively, it was clear that annual emissions in CO2-equivalent (CO2-eq) were higher in management-intense pasture and sugarcane than in unmanaged pasture. Surprisingly, tilled pasture with fertilizer (management-intensive pasture) resulted in higher CO2-eq emissions than conventional sugarcane. We concluded that intensification of pasture management and the conversion of pasture to sugarcane can increase the emission factor (EF) estimated for sugarcane produced in Brazil. The role of management practices and environmental conditions and the potential for reducing emissions are discussed.


Assuntos
Agricultura , Gases de Efeito Estufa , Saccharum , Animais , Brasil , Dióxido de Carbono , Bovinos , Gases , Efeito Estufa , Metano , Óxido Nitroso
3.
Environ Sci Technol ; 49(15): 8986-94, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26181355

RESUMO

Studies documenting the capacity of restored streams to reduce pollutant loads indicate that they are relatively ineffective when principal watershed stressors remain intact. Novel restorations are being designed to increase the hydraulic connectivity between stream channels and floodplains to enhance pollutant removal, and their popularity has increased the need for measurements of potential load reductions. Herein we summarize input-output budgets of total suspended solids (TSS) in two Coastal Plain lowland valleys modified to create stream-wetland complexes located above the head-of-tide on the western shore of Chesapeake Bay. Loads entering (input) and exiting (output) the reconfigured valleys over three years were 103 ± 26 and 85 ± 21 tons, respectively, and 41 ± 10 and 46 ± 9 tons, respectively. In both cases, changes in loads within the reconfigured valleys were insignificant relative to cumulative errors. High variability of TSS retention among stormflow events suggests that the capacity of these systems to trap and retain solids and their sustainability depend on the magnitude of TSS loads originating upstream, design characteristics, and the frequency and magnitude of large storms. Constructed stream-wetland complexes receiving relatively high TSS loads may experience progressive physical and chemical changes that limit their sustainability.


Assuntos
Baías/química , Rios/química , Esgotos/química , Áreas Alagadas , Maryland , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 844: 157238, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35810907

RESUMO

Tropical streams have been intensively impacted by agricultural activities. Among the most important agricultural activities in Brazil, sugarcane production represents a large impact for economic development and for environmental conditions. Permeating sugarcane fields, several headwater streams can be affected by sugarcane cultivation, in special, aquatic biogeochemical cycles because of the deforestation, fertilization, crop residues and higher temperatures in the tropics. In this study, we analyzed the effects of sugarcane cultivation on methane fluxes and concentrations, assuming that carbon cycles are influenced by agricultural activities in headwater streams. Our study aimed to (1) measure methane fluxes and concentrations in tropical streams located in Southeastern Brazil, (2) Analyze whether seasonal cycles influence methane fluxes and concentrations, (3) Evaluate the influence of sugarcane cultivation on methane fluxes and (4) Analyze the association between water chemistry in the methane concentrations in tropical streams. We found mean fluxes of CH4 of 0.280 mmol m-2 d-1, with higher fluxes during the summer and in streams draining preserved catchments. The average CH4 concentrations were 0.695 µmol L-1, with higher values during the summer and in streams draining preserved catchments. Methane concentrations in the studied streams was influenced by dissolved oxygen (negatively), dissolved organic carbon (negatively), water velocity (positively) and conductivity (negatively). Methane concentrations were significantly higher than concentrations found in Temperate Grasslands, Savannas & Shrublands and similar to concentrations found in other tropical biomes (excluding Tropical & Subtropical Moist Broadleaf Forests which receives large amounts of organic inputs). We conclude that sugarcane influence methane concentrations and fluxes in tropical streams by reducing the organic matter availability provided by the native vegetation in soil and water.


Assuntos
Metano , Rios , Agricultura , Dióxido de Carbono , Florestas , Rios/química , Água
5.
Ecol Appl ; 21(6): 1989-2006, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21939039

RESUMO

The degradation of headwater streams is common in urbanized coastal areas, and the role these streams play in contributing to downstream pollution is a concern among natural resource managers and policy makers. Thus, many urban stream restoration efforts are increasingly focused on reducing the downstream flux of pollutants. In regions that suffer from coastal eutrophication, it is unclear whether stream restoration does in fact reduce nitrogen (N) flux to downstream waters and, if so, by how much and at what cost. In this paper, we evaluate whether stream restoration implemented to improve water quality of urban and suburban streams in the Chesapeake Bay region, USA, is effective at reducing the export of N in stream flow to downstream waters. We assessed the effectiveness of restored streams positioned in the upland vs. lowland regions of Coastal Plain watershed during both average and stormflow conditions. We found that, during periods of low discharge, lowland streams that receive minor N inputs from groundwater or bank seepage reduced in-stream N fluxes. Furthermore, lowland streams with the highest N concentrations and lowest discharge were the most effective. During periods of high flow, only those restoration projects that converted lowland streams to stream-wetland complexes seemed to be effective at reducing N fluxes, presumably because the design promoted the spillover of stream flow onto adjacent floodplains and wetlands. The observed N-removal rates were relatively high for stream ecosystems, and on the order of 5% of the inputs to the watershed. The dominant forms of N entering restored reaches varied during low and high flows, indicating that N uptake and retention were controlled by distinctive processes during different hydrological conditions. Therefore, in order for stream restoration to effectively reduce N fluxes exported to downstream waters, restoration design should include features that enhance the processing and retention of different forms of N, and for a wide range of flow conditions. The use of strategic designs that match the dominant attributes of a stream such as position in the watershed, influence of groundwater, dominant flow conditions, and N concentrations is crucial to assure the success of restoration.


Assuntos
Conservação dos Recursos Naturais/métodos , Recuperação e Remediação Ambiental/métodos , Nitrogênio/química , Rios , Poluentes Químicos da Água/química , Incerteza , Movimentos da Água
6.
Sci Total Environ ; 661: 386-392, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30677684

RESUMO

The unpredictable timing and magnitude of precipitation events and the spatiotemporal variability of constituent concentrations are major complications to effective monitoring of watershed nutrient and sediment loads. Furthermore, detecting small changes in constituent loads in response to implementation of Stormwater control measures (SCMs) against natural variability is a challenge. Nevertheless, regulatory frameworks that direct reductions of pollutants to streams frequently depend on the ability to quantify changes in loads after management interventions. The before-after-control impact (BACI) sampling design is often used to assess the effects of an environmental change made at a known point in time. However, this approach may be complicated to apply to nutrient and sediment loads in streams as the relative impact of SCMs on nutrient concentration conditional on the long term variability of discharges has not been evaluated. Multi-scale monitoring studies that provide estimates of the natural temporal and spatial variability of discharge and concentrations could provide useful information in designing a BACI study. Here we use data from the Baltimore Long Term Ecological Research (LTER) sites and urban restoration sites to develop multiple statistical measures of the effectiveness of a given monitoring scheme in revealing the hypothesized restoration effects in terms of hydrology and nutrient loads. Stratified sampling over baseflow and stormflow and the use of multiple control streams were useful tools to detect long term cumulative reductions in concentrations due to SCMs. Moderate reductions in concentration (20%), however, were not detectable with the design options considered. We emphasize that appropriate pre-planning of monitoring schemes and sampling frequency is essential to determine if the effects on constituent loads resulting from a given watershed restoration activity are measurable.

7.
Ecol Appl ; 18(4): 885-98, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18536250

RESUMO

Several geopolitical factors, aggravated by worries of global warming, have been fueling the search for and production of renewable energy worldwide for the past few years. Such demand for renewable energy is likely to benefit the sugarcane ethanol industry in Brazil, not only because sugarcane ethanol has a positive energetic balance and relatively low production costs, but also because Brazilian ethanol has been successfully produced and used as biofuel in the country since the 1970s. However, environmental and social impacts associated with ethanol production in Brazil can become important obstacles to sustainable biofuel production worldwide. Atmospheric pollution from burning of sugarcane for harvesting, degradation of soils and aquatic systems, and the exploitation of cane cutters are among the issues that deserve immediate attention from the Brazilian government and international societies. The expansion of sugarcane crops to the areas presently cultivated for soybeans also represent an environmental threat, because it may increase deforestation pressure from soybean crops in the Amazon region. In this paper, we discuss environmental and social issues linked to the expansion of sugarcane in Brazil for ethanol production, and we provide recommendations to help policy makers and the Brazilian government establish new initiatives to produce a code for ethanol production that is environmentally sustainable and economically fair. Recommendations include proper planning and environmental risk assessments for the expansion of sugarcane to new regions such as Central Brazil, improvement of land use practices to reduce soil erosion and nitrogen pollution, proper protection of streams and riparian ecosystems, banning of sugarcane burning practices, and fair working conditions for sugarcane cutters. We also support the creation of a more constructive approach for international stakeholders and trade organizations to promote sustainable development for biofuel production in developing countries such as Brazil. Finally, we support the inclusion of environmental values in the price of biofuels in order to discourage excessive replacement of natural ecosystems such as forests, wetlands, and pasture by bioenergy crops.


Assuntos
Agricultura/tendências , Poluição Ambiental , Etanol , Saccharum , Agricultura/economia , Agricultura/ética , Brasil , Ecossistema , Fontes Geradoras de Energia , Poluição Ambiental/efeitos adversos , Pneumopatias/etiologia , Nitrogênio/análise , Poluentes da Água/análise
9.
PLoS One ; 12(8): e0183210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28817639

RESUMO

BACKGROUND: Enhancing water provision services is a common target in forest restoration projects worldwide due to growing concerns over freshwater scarcity. However, whether or not forest cover expansion or restoration can improve water provision services is still unclear and highly disputed. PURPOSE: The goal of this review is to provide a balanced and impartial assessment of the impacts of forest restoration and forest cover expansion on water yields as informed by the scientific literature. Potential sources of bias on the results of papers published are also examined. DATA SOURCES: English, Spanish and Portuguese peer-review articles in Agricola, CAB Abstracts, ISI Web of Science, JSTOR, Google Scholar, and SciELO. Databases were searched through 2015. SEARCH TERMS: Intervention terms included forest restoration, regeneration/regrowth, forest second-growth, forestation/afforestation, and forestry. Target terms included water yield/quantity, streamflow, discharge, channel runoff, and annual flow. STUDY SELECTION AND ELIGIBILITY CRITERIA: Articles were pre-selected based on key words in the title, abstract or text. Eligible articles addressed relevant interventions and targets and included quantitative information. RESULTS: Most studies reported decreases in water yields following the intervention, while other hydrological benefits have been observed. However, relatively few studies focused specifically on forest restoration, especially with native species, and/or on projects done at large spatial or temporal scales. Information is especially limited for the humid tropics and subtropics. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS: While most studies reported a decrease in water yields, meta-analyses from a sub-set of studies suggest the potential influence of temporal and/or spatial scales on the outcomes of forest cover expansion or restoration projects. Given the many other benefits of forest restoration, improving our understanding of when and why forest restoration can lead to recovery of water yields is crucial to help improve positive outcomes and prevent unintended consequences. Our study identifies the critical types of studies and associated measurements needed.


Assuntos
Florestas , Água
10.
Sci Total Environ ; 584-585: 339-347, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28040217

RESUMO

In Brazil, the cultivation of bioenergy crops is expanding at an accelerated rate. Most of this expansion has occurred over low-intensity pasture and is considered sustainable because it does not involve deforestation of natural vegetation. However, the impacts on the water quality of headwater streams are poorly understood, especially with regard to the influence of land use patterns in the watershed. In this study, we investigated the effects of land-use conversion on the water quality of streams draining sugarcane fields and examined whether the preservation of forested areas at the top of the headwaters would help mitigate the negative impacts of intensive agriculture. Water samples were collected in two paired catchments in southeastern Brazil, which is one of the largest sugarcane production regions in the world. Our results show significant differences in the water quality of streams predominantly draining the pasture or the sugarcane field. Several parameters commonly used to indicate water quality, such as the concentrations of nitrate and suspended solids, were significantly higher in the sugarcane than in the pasture stream. Differences in water quality between the streams draining predominantly pasture or sugarcane fields were accentuated during the wet season. The preservation of forests surrounding the headwater streams was associated with overall better water quality conditions, such as lower nitrate concentrations and temperature of the stream water. We concluded that forest conservation in the headwater agricultural catchments is an important factor preventing water quality degradation in tropical streams. Therefore, we strongly recommend the preservation of robust riparian forests in the headwaters of tropical watersheds with intensive agriculture. More studies on the effects of best agricultural practices in bioenergy crops can greatly improve our capacity to prevent the degradation of water quality in the tropical waterways as intensive agriculture continues to expand in this region of the world.


Assuntos
Agricultura , Produtos Agrícolas/crescimento & desenvolvimento , Rios , Qualidade da Água , Biocombustíveis , Brasil
11.
Science ; 325(5940): 575-6, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19644112

RESUMO

Ecological restoration is an activity that ideally results in the return of an ecosystem to an undisturbed state. Ecosystem services are the benefits humans derive from ecosystems. The two have been joined to support growing environmental markets with the goal of creating restoration-based credits that can be bought and sold. However, the allure of these markets may be overshadowing shortcomings in the science and practice of ecological restoration. Before making risky investments, we must understand why and when restoration efforts fall short of recovering the full suite of ecosystem services, what can be done to improve restoration success, and why direct measurement of the biophysical processes that support ecosystem services is the only way to guarantee the future success of these markets. Without new science and an oversight framework to protect the ecosystem service assets which people depend, markets could actually accelerate environmental degradation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Biodiversidade , Fenômenos Biofísicos , Humanos , Áreas Alagadas
12.
Biota neotrop. (Online, Ed. port.) ; 9(4): 21-25, Oct.-Dec. 2009. graf
Artigo em Inglês | LILACS | ID: lil-543217

RESUMO

Brazil has a unique position in the world. It is one of the few countries that can be one of the most important producers of food, fiber and biofuel and at the same time maintain its mega biodiversity endowment and vital ecosystems services properly running. This is a challenge that only can be achieved by recognizing the importance of agribusiness sector to the Brazilian economy, but also that ecosystems have limits and we should not endless expand agriculture in the name of "development". Ecosystem services have to be recognized also as a "development" to be kept for the next generations. Agriculture only exists where ecosystems are able to maintain its basic functioning. Therefore, a well preserved nature it is the most precious asset of agriculture.


O Brasil encontra-se em uma posição privilegiada diante do mundo. É um dos únicos países que pode ao mesmo tempo ser um importante produtor de alimentos, fibras e biocombustíveis e manter sua mega biodiversidade relativamente intacta e serviços ambientais vitais funcionando apropriadamente. Este é um desafio enorme que pode ser obtido através do reconhecimento da importância que o setor agropecuário brasileiro tem para o país, mas ao mesmo tempo reconhecendo também que os ecossistemas têm limites naturais e não devemos expandir nossa fronteira agrícola indefinidamente em nome do "desenvolvimento". Os serviços ambientais prestados pelos ecossistemas devem ser valorizados e também reconhecidos como um tipo de "desenvolvimento" a ser mantido para as próximas gerações. A agricultura somente existe onde os ecossistemas são capazes de manter suas funções básicas de funcionamento. Portanto, o maior capital da agricultura é a natureza minimamente preservada.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA