Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(25): 253001, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37418745

RESUMO

We present improved constraints on the coupling of ultralight bosonic dark matter to photons based on long-term measurements of two optical frequency ratios. In these optical clock comparisons, we relate the frequency of the ^{2}S_{1/2}(F=0)↔^{2}F_{7/2}(F=3) electric-octupole (E3) transition in ^{171}Yb^{+} to that of the ^{2}S_{1/2}(F=0)↔^{2}D_{3/2}(F=2) electric-quadrupole (E2) transition of the same ion, and to that of the ^{1}S_{0}↔^{3}P_{0} transition in ^{87}Sr. Measurements of the first frequency ratio ν_{E3}/ν_{E2} are performed via interleaved interrogation of both transitions in a single ion. The comparison of the single-ion clock based on the E3 transition with a strontium optical lattice clock yields the second frequency ratio ν_{E3}/ν_{Sr}. By constraining oscillations of the fine-structure constant α with these measurement results, we improve existing bounds on the scalar coupling d_{e} of ultralight dark matter to photons for dark matter masses in the range of about (10^{-24}-10^{-17}) eV/c^{2}. These results constitute an improvement by more than an order of magnitude over previous investigations for most of this range. We also use the repeated measurements of ν_{E3}/ν_{E2} to improve existing limits on a linear temporal drift of α and its coupling to gravity.


Assuntos
Eletricidade , Fótons
2.
Phys Rev Lett ; 131(8): 083002, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683165

RESUMO

We report on an evaluation of an optical clock that uses the ^{2}S_{1/2}→^{2}D_{5/2} transition of a single ^{88}Sr^{+} ion as the reference. In contrast to previous work, we estimate the effective temperature of the blackbody radiation that shifts the reference transition directly during operation from the corresponding frequency shift and the well-characterized sensitivity to thermal radiation. We measure the clock output frequency against an independent ^{171}Yb^{+} ion clock, based on the ^{2}S_{1/2}(F=0)→^{2}F_{7/2}(F=3) electric octupole (E3) transition, and determine the frequency ratio with a total fractional uncertainty of 2.3×10^{-17}. Relying on a previous measurement of the ^{171}Yb^{+} (E3) clock frequency, we find the absolute frequency of the ^{88}Sr^{+} clock transition to be 444 779 044 095 485.277(59) Hz. Our result reduces the uncertainty by a factor of 3 compared with the previously most accurate measurement and may help to resolve so far inconsistent determinations of this value. We also show that for three simultaneously interrogated ^{88}Sr^{+} ions, the increased number causes the expected improvement of the short-term frequency instability of the optical clock without degrading its systematic uncertainty.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA