RESUMO
In the wake of the Human Genome Project (HGP), strong expectations were set for the timeline and impact of genomics on medicine-an anticipated transformation in the diagnosis, treatment, and prevention of disease. In this Perspective, we take stock of the nascent field of genomic medicine. In what areas, if any, is genomics delivering on this promise, or is the path to success clear? Where are we falling short, and why? What have been the unanticipated developments? Overall, we argue that the optimism surrounding the transformational potential of genomics on medicine remains justified, albeit with a considerably different form and timescale than originally projected. We also argue that the field needs to pivot back to basics, as understanding the entirety of the genotype-to-phenotype equation is a likely prerequisite for delivering on the full potential of the human genome to advance the human condition.
Assuntos
Genoma Humano/genética , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Testes Genéticos , Genômica/métodos , Genômica/tendências , Projeto Genoma Humano , HumanosRESUMO
Variants of uncertain significance fundamentally limit the clinical utility of genetic information. The challenge they pose is epitomized by BRCA1, a tumour suppressor gene in which germline loss-of-function variants predispose women to breast and ovarian cancer. Although BRCA1 has been sequenced in millions of women, the risk associated with most newly observed variants cannot be definitively assigned. Here we use saturation genome editing to assay 96.5% of all possible single-nucleotide variants (SNVs) in 13 exons that encode functionally critical domains of BRCA1. Functional effects for nearly 4,000 SNVs are bimodally distributed and almost perfectly concordant with established assessments of pathogenicity. Over 400 non-functional missense SNVs are identified, as well as around 300 SNVs that disrupt expression. We predict that these results will be immediately useful for the clinical interpretation of BRCA1 variants, and that this approach can be extended to overcome the challenge of variants of uncertain significance in additional clinically actionable genes.
Assuntos
Proteína BRCA1/genética , Edição de Genes , Predisposição Genética para Doença/classificação , Variação Genética/genética , Genoma Humano/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Linhagem Celular , Éxons/genética , Feminino , Genes Essenciais/genética , Humanos , Mutação com Perda de Função/genética , Modelos Moleculares , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reparo de DNA por Recombinação/genéticaRESUMO
The application of genomics to medicine has accelerated the discovery of mutations underlying disease and has enhanced our knowledge of the molecular underpinnings of diverse pathologies. As the amount of human genetic material queried via sequencing has grown exponentially in recent years, so too has the number of rare variants observed. Despite progress, our ability to distinguish which rare variants have clinical significance remains limited. Over the last decade, however, powerful experimental approaches have emerged to characterize variant effects orders of magnitude faster than before. Fueled by improved DNA synthesis and sequencing and, more recently, by CRISPR/Cas9 genome editing, multiplex functional assays provide a means of generating variant effect data in wide-ranging experimental systems. Here, I review recent applications of multiplex assays that link human variants to disease phenotypes and I describe emerging strategies that will enhance their clinical utility in coming years.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Genoma Humano , Sistemas CRISPR-Cas , Bases de Dados Genéticas , Edição de Genes , Estudos de Associação Genética/métodos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fenótipo , Locos de Características QuantitativasRESUMO
The extent to which non-coding mutations contribute to Mendelian disease is a major unknown in human genetics. Relatedly, the vast majority of candidate regulatory elements have yet to be functionally validated. Here, we describe a CRISPR-based system that uses pairs of guide RNAs (gRNAs) to program thousands of kilobase-scale deletions that deeply scan across a targeted region in a tiling fashion ("ScanDel"). We applied ScanDel to HPRT1, the housekeeping gene underlying Lesch-Nyhan syndrome, an X-linked recessive disorder. Altogether, we programmed 4,342 overlapping 1 and 2 kb deletions that tiled 206 kb centered on HPRT1 (including 87 kb upstream and 79 kb downstream) with median 27-fold redundancy per base. We functionally assayed programmed deletions in parallel by selecting for loss of HPRT function with 6-thioguanine. As expected, sequencing gRNA pairs before and after selection confirmed that all HPRT1 exons are needed. However, HPRT1 function was robust to deletion of any intergenic or deeply intronic non-coding region, indicating that proximal regulatory sequences are sufficient for HPRT1 expression. Although our screen did identify the disruption of exon-proximal non-coding sequences (e.g., the promoter) as functionally consequential, long-read sequencing revealed that this signal was driven by rare, imprecise deletions that extended into exons. Our results suggest that no singular distal regulatory element is required for HPRT1 expression and that distal mutations are unlikely to contribute substantially to Lesch-Nyhan syndrome burden. Further application of ScanDel could shed light on the role of regulatory mutations in disease at other loci while also facilitating a deeper understanding of endogenous gene regulation.
Assuntos
Sistemas CRISPR-Cas/genética , Regulação da Expressão Gênica/genética , Hipoxantina Fosforribosiltransferase/genética , Sequências Reguladoras de Ácido Nucleico/genética , Deleção de Sequência/genética , Linhagem Celular , Células HEK293 , Humanos , Hipoxantina Fosforribosiltransferase/biossíntese , Síndrome de Lesch-Nyhan/genética , RNA Guia de Cinetoplastídeos/genética , Tioguanina/metabolismoRESUMO
Saturation mutagenesis--coupled to an appropriate biological assay--represents a fundamental means of achieving a high-resolution understanding of regulatory and protein-coding nucleic acid sequences of interest. However, mutagenized sequences introduced in trans on episomes or via random or "safe-harbour" integration fail to capture the native context of the endogenous chromosomal locus. This shortcoming markedly limits the interpretability of the resulting measurements of mutational impact. Here, we couple CRISPR/Cas9 RNA-guided cleavage with multiplex homology-directed repair using a complex library of donor templates to demonstrate saturation editing of genomic regions. In exon 18 of BRCA1, we replace a six-base-pair (bp) genomic region with all possible hexamers, or the full exon with all possible single nucleotide variants (SNVs), and measure strong effects on transcript abundance attributable to nonsense-mediated decay and exonic splicing elements. We similarly perform saturation genome editing of a well-conserved coding region of an essential gene, DBR1, and measure relative effects on growth that correlate with functional impact. Measurement of the functional consequences of large numbers of mutations with saturation genome editing will potentially facilitate high-resolution functional dissection of both cis-regulatory elements and trans-acting factors, as well as the interpretation of variants of uncertain significance observed in clinical sequencing.
Assuntos
Genômica/métodos , Anotação de Sequência Molecular/métodos , Mutagênese/genética , Reparo de DNA por Recombinação/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sequência Conservada/genética , Éxons/genética , Genes BRCA1 , Genes Essenciais/genética , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Fases de Leitura Aberta/genética , Mutação Puntual/genética , RNA Nucleotidiltransferases/genética , Splicing de RNA/genética , Sequências Reguladoras de Ácido Nucleico/genética , Moldes GenéticosRESUMO
BACKGROUND: Recent advances in genome editing have facilitated the direct manipulation of not only the genome, but also the epigenome. Genome editing is typically performed by introducing a single CRISPR/Cas9-mediated double-strand break (DSB), followed by non-homologous end joining (NHEJ)- or homology-directed repair-mediated repair. Epigenome editing, and in particular methylation of CpG dinucleotides, can be performed using catalytically inactive Cas9 (dCas9) fused to a methyltransferase domain. However, for investigations of the role of methylation in gene silencing, studies based on dCas9-methyltransferase have limited resolution and are potentially confounded by the effects of binding of the fusion protein. As an alternative strategy for epigenome editing, we tested CRISPR/Cas9 dual cutting of the genome in the presence of in vitro methylated exogenous DNA, with the aim of driving replacement of the DNA sequence intervening the dual cuts via NHEJ. RESULTS: In a proof of concept at the HPRT1 promoter, successful replacement events with heavily methylated alleles of a CpG island resulted in functional silencing of the HPRT1 gene. Although still limited in efficiency, our study demonstrates concurrent epigenome and genome editing in a single event. CONCLUSIONS: This study opens the door to investigations of the functional consequences of methylation patterns at single CpG dinucleotide resolution. Our results furthermore support the conclusion that promoter methylation is sufficient to functionally silence gene expression.
Assuntos
Sistemas CRISPR-Cas/genética , Ctenóforos/genética , Edição de Genes/métodos , Genoma/genética , Animais , Sequência de Bases , Epigenoma/genéticaRESUMO
The STIM1-ORAI1 pathway of store-operated Ca(2+) entry is an essential component of cellular Ca(2+) signalling. STIM1 senses depletion of intracellular Ca(2+) stores in response to physiological stimuli, and relocalizes within the endoplasmic reticulum to plasma-membrane-apposed junctions, where it recruits and gates open plasma membrane ORAI1 Ca(2+) channels. Here we use a genome-wide RNA interference screen in HeLa cells to identify filamentous septin proteins as crucial regulators of store-operated Ca(2+) entry. Septin filaments and phosphatidylinositol-4,5-bisphosphate (also known as PtdIns(4,5)P2) rearrange locally at endoplasmic reticulum-plasma membrane junctions before and during formation of STIM1-ORAI1 clusters, facilitating STIM1 targeting to these junctions and promoting the stable recruitment of ORAI1. Septin rearrangement at junctions is required for PtdIns(4,5)P2 reorganization and efficient STIM1-ORAI1 communication. Septins are known to demarcate specialized membrane regions such as dendritic spines, the yeast bud and the primary cilium, and to serve as membrane diffusion barriers and/or signalling hubs in cellular processes such as vesicle trafficking, cell polarity and cytokinesis. Our data show that septins also organize the highly localized plasma membrane domains that are important in STIM1-ORAI1 signalling, and indicate that septins may organize membrane microdomains relevant to other signalling processes.
Assuntos
Cálcio/metabolismo , Fatores de Transcrição NFATC/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Septinas/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Genoma Humano , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Transporte Proteico , Septinas/deficiência , Septinas/genética , Transdução de Sinais , Molécula 1 de Interação EstromalRESUMO
In addition to their protein coding function, exons can also serve as transcriptional enhancers. Mutations in these exonic-enhancers (eExons) could alter both protein function and transcription. However, the functional consequence of eExon mutations is not well known. Here, using massively parallel reporter assays, we dissect the enhancer activity of three liver eExons (SORL1 exon 17, TRAF3IP2 exon 2, PPARG exon 6) at single nucleotide resolution in the mouse liver. We find that both synonymous and non-synonymous mutations have similar effects on enhancer activity and many of the deleterious mutation clusters overlap known liver-associated transcription factor binding sites. Carrying a similar massively parallel reporter assay in HeLa cells with these three eExons found differences in their mutation profiles compared to the liver, suggesting that enhancers could have distinct operating profiles in different tissues. Our results demonstrate that eExon mutations could lead to multiple phenotypes by disrupting both the protein sequence and enhancer activity and that enhancers can have distinct mutation profiles in different cell types.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Elementos Facilitadores Genéticos , Éxons/genética , Proteínas de Membrana Transportadoras/genética , PPAR gama/genética , Receptores de LDL/genética , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Células HeLa , Humanos , Fígado/metabolismo , Camundongos , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Splicing de RNA/genética , Fatores de Transcrição/biossínteseRESUMO
Nuclear factor of activated T cells (NFAT) proteins are Ca(2+)-regulated transcription factors that control gene expression in many cell types. NFAT proteins are heavily phosphorylated and reside in the cytoplasm of resting cells; when cells are stimulated by a rise in intracellular Ca(2+), NFAT proteins are dephosphorylated by the Ca(2+)/calmodulin-dependent phosphatase calcineurin and translocate to the nucleus to activate target gene expression. Here we show that phosphorylated NFAT1 is present in a large cytoplasmic RNA-protein scaffold complex that contains a long intergenic noncoding RNA (lincRNA), NRON [noncoding (RNA) repressor of NFAT]; a scaffold protein, IQ motif containing GTPase activating protein (IQGAP); and three NFAT kinases, casein kinase 1, glycogen synthase kinase 3, and dual specificity tyrosine phosphorylation regulated kinase. Combined knockdown of NRON and IQGAP1 increased NFAT dephosphorylation and nuclear import exclusively after stimulation, without affecting the rate of NFAT rephosphorylation and nuclear export; and both NRON-depleted T cells and T cells from IQGAP1-deficient mice showed increased production of NFAT-dependent cytokines. Our results provide evidence that a complex of lincRNA and protein forms a scaffold for a latent transcription factor and its regulatory kinases, and support an emerging consensus that lincRNAs that bind transcriptional regulators have a similar scaffold function.
Assuntos
Fatores de Transcrição NFATC/química , Fatores de Transcrição NFATC/metabolismo , RNA/química , RNA/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Linfócitos T CD8-Positivos/metabolismo , Primers do DNA/genética , Células HeLa , Humanos , Células Jurkat , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Fosforilação , RNA Longo não Codificante , RNA Interferente Pequeno/genética , RNA não Traduzido/química , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismoRESUMO
To maximize the impact of precision medicine approaches, it is critical to identify genetic variants underlying disease and to accurately quantify their functional effects. A gene exemplifying the challenge of variant interpretation is the von Hippel-Lindautumor suppressor (VHL). VHL encodes an E3 ubiquitin ligase that regulates the cellular response to hypoxia. Germline pathogenic variants in VHL predispose patients to tumors including clear cell renal cell carcinoma (ccRCC) and pheochromocytoma, and somatic VHL mutations are frequently observed in sporadic renal cancer. Here we optimize and apply saturation genome editing to assay nearly all possible single-nucleotide variants (SNVs) across VHL's coding sequence. To delineate mechanisms, we quantify mRNA dosage effects and compare functional effects in isogenic cell lines. Function scores for 2,268 VHL SNVs identify a core set of pathogenic alleles driving ccRCC with perfect accuracy, inform differential risk across tumor types and reveal new mechanisms by which variants impact function. These results have immediate utility for classifying VHL variants encountered clinically and illustrate how precise functional measurements can resolve pleiotropic and dosage-dependent genotype-phenotype relationships across complete genes.
Assuntos
Alelos , Carcinoma de Células Renais , Edição de Genes , Neoplasias Renais , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor Von Hippel-Lindau , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Humanos , Edição de Genes/métodos , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Linhagem Celular Tumoral , Predisposição Genética para Doença , MutaçãoRESUMO
Droplet microfluidic methods have massively increased the throughput of single-cell sequencing campaigns. The benefit of scale-up is, however, accompanied by increased background noise when processing challenging samples and the overall RNA capture efficiency is lower. These drawbacks stem from the lack of strategies to enrich for high-quality material or specific cell types at the moment of cell encapsulation and the absence of implementable multi-step enzymatic processes that increase capture. Here we alleviate both bottlenecks using fluorescence-activated droplet sorting to enrich for droplets that contain single viable cells, intact nuclei, fixed cells or target cell types and use reagent addition to droplets by picoinjection to perform multi-step lysis and reverse transcription. Our methodology increases gene detection rates fivefold, while reducing background noise by up to half. We harness these properties to deliver a high-quality molecular atlas of mouse brain development, despite starting with highly damaged input material, and provide an atlas of nascent RNA transcription during mouse organogenesis. Our method is broadly applicable to other droplet-based workflows to deliver sensitive and accurate single-cell profiling at a reduced cost.
Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Animais , Camundongos , Técnicas Analíticas Microfluídicas/métodos , RNA , Análise de Célula Única/métodosRESUMO
Accurate interpretation of human genetic data is critical for optimizing outcomes in the era of genomic medicine. Powerful methods for testing genetic variants for functional effects are allowing researchers to characterize thousands of variants across disease genes. Here, we review experimental tools enabling highly scalable assays of variants, focusing specifically on Saturation Genome Editing (SGE). We discuss examples of how this technique is being implemented for variant testing at scale and describe how SGE data for BRCA1 have been clinically validated and used to aid variant interpretation. The initial success at predicting variant pathogenicity with SGE has spurred efforts to expand this and related techniques to many more genes.
RESUMO
Multicellular systems develop from single cells through distinct lineages. However, current lineage-tracing approaches scale poorly to whole, complex organisms. Here, we use genome editing to progressively introduce and accumulate diverse mutations in a DNA barcode over multiple rounds of cell division. The barcode, an array of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 target sites, marks cells and enables the elucidation of lineage relationships via the patterns of mutations shared between cells. In cell culture and zebrafish, we show that rates and patterns of editing are tunable and that thousands of lineage-informative barcode alleles can be generated. By sampling hundreds of thousands of cells from individual zebrafish, we find that most cells in adult organs derive from relatively few embryonic progenitors. In future analyses, genome editing of synthetic target arrays for lineage tracing (GESTALT) can be used to generate large-scale maps of cell lineage in multicellular systems for normal development and disease.
Assuntos
Proteínas de Bactérias , Sistemas CRISPR-Cas , Linhagem da Célula , Rastreamento de Células/métodos , Endonucleases , Engenharia Genética/métodos , Animais , Proteína 9 Associada à CRISPR , Divisão Celular/genética , Código de Barras de DNA Taxonômico , Mutação , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Peixe-Zebra , ZigotoRESUMO
Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.