Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Chemphyschem ; : e202400649, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172113

RESUMO

The platinum hydride cluster Pt12H24 - is studied in gas phase by a combination of trapped ion electron diffraction and density functional theory computations. We find a cuboctahedral platinum cage with bridge bound hydrogen atoms. This unusual structure is stabilized by Pt-H-Pt multicenter bonds and shows characteristics of spherical aromaticity.

2.
Angew Chem Int Ed Engl ; 63(17): e202401372, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38390783

RESUMO

Herein, we present the first report on the synthesis of rare-earth complexes featuring a 9,10-diborataanthracene ligand. This 14-π-electron ligand is highly reductive and was previously used in small-molecule activation. Salt elimination reactions between dipotassium 9,10-diethyl-9,10-diborataanthracene [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] (CotTIPS=1,4-(iPr3Si)2C8H6) in a 1 : 1 ratio yielded heteroleptic sandwich complexes [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Y, Dy, Er). These compounds form Lewis-base-free one-dimensional coordination polymers when crystallised from toluene. In contrast, reaction of [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] in a 1 : 2 ratio led to the formation of heteroleptic triple-decker complexes [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Y, Dy, Er). Notably, these are not only the first lanthanide triple-decker compounds featuring a six-membered ring as a deck but also the first trivalent lanthanide triple-decker featuring a heterocycle in the coordination sphere. Magnetic investigations reveal that [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Dy, Er) and [(η8-CotTIPS)ErIII(µ-η6:η6-DEDBA)ErIII(η8-CotTIPS)] exhibit Single-Molecule Magnet (SMM) behaviour. In the case of [(η8-CotTIPS)LnIII(µ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Dy, Er), the introduction of a second near lanthanide ion results in strong antiferromagnetic interactions, allowing the enhancement of the magnetic characteristic of the system, compared to the quasi isolated counterpart. This research renews the overlooked coordination chemistry of the DBA ligand and expands it to encompass rare-earth elements.

3.
Chemistry ; 29(22): e202203438, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36807660

RESUMO

In this report, we present the dinuclear copper(II) dimethylglyoxime (H2 dmg) complex [Cu2 (H2 dmg)(Hdmg)(dmg)]+ (1), which, in contrast to its mononuclear analogue [Cu(Hdmg)2 ] (2), is subject to a cooperativity-driven hydrolysis. The combined Lewis acidity of both copper centers increases the electrophilicity of the carbon atom in the bridging µ2 -O-N=C-group of H2 dmg and thus, facilitates the nucleophilic attack of H2 O. This hydrolysis yields butane-2,3-dione monoxime (3) and NH2 OH that, depending on the solvent, is then either oxidized or reduced. In ethanol, NH2 OH is reduced to NH4 + , yielding acetaldehyde as the oxidation product. In contrast, in CH3 CN, NH2 OH is oxidized by CuII to form N2 O and [Cu(CH3 CN)4 ]+ . Herein are presented the combined synthetic, theoretical, spectroscopic and spectrometric methods that indicate and establish the reaction pathway of this solvent-dependent reaction.

4.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239915

RESUMO

Due to its outstanding properties, graphene has emerged as one of the most promising 2D materials in a large variety of research fields. Among the available fabrication protocols, chemical vapor deposition (CVD) enables the production of high quality single-layered large area graphene. To better understand the kinetics of CVD graphene growth, multiscale modeling approaches are sought after. Although a variety of models have been developed to study the growth mechanism, prior studies are either limited to very small systems, are forced to simplify the model to eliminate the fast process, or they simplify reactions. While it is possible to rationalize these approximations, it is important to note that they have non-trivial consequences on the overall growth of graphene. Therefore, a comprehensive understanding of the kinetics of graphene growth in CVD remains a challenge. Here, we introduce a kinetic Monte Carlo protocol that permits, for the first time, the representation of relevant reactions on the atomic scale, without additional approximations, while still reaching very long time and length scales of the simulation of graphene growth. The quantum-mechanics-based multiscale model, which links kinetic Monte Carlo growth processes with the rates of occurring chemical reactions, calculated from first principles makes it possible to investigate the contributions of the most important species in graphene growth. It permits the proper investigation of the role of carbon and its dimer in the growth process, thus indicating the carbon dimer to be the dominant species. The consideration of hydrogenation and dehydrogenation reactions enables us to correlate the quality of the material grown within the CVD control parameters and to demonstrate an important role of these reactions in the quality of the grown graphene in terms of its surface roughness, hydrogenation sites, and vacancy defects. The model developed is capable of providing additional insights to control the graphene growth mechanism on Cu(111), which may guide further experimental and theoretical developments.


Assuntos
Doenças Cardiovasculares , Grafite , Humanos , Carbono , Simulação por Computador , Gases
5.
Chemphyschem ; 23(1): e202100648, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34505748

RESUMO

We present a spin-orbit configuration interaction program which has been tailored for the description of the magnetic properties of polynuclear metal complexes with partially filled d- and f-shells. The spin-orbit operators are directly included in the configuration interaction program based on Slater-determinants. The lowest states are obtained by a Block-Davidson-type diagonalisation. The usage of localised active orbitals enables the construction of start vectors from tensor products of single-center wave functions that already include spin-orbit interaction. This allows for an analysis of the role and the interplay of the different metal centres. Furthermore, in case of weak coupling of the metal centres these tensor products are already close to the final wave functions ensuring fast convergence. In combination with a two-layer hybrid parallelisation, this makes the program highly efficient. Based on the spin-orbit coupled wave functions, magnetic D-tensors, g-tensors and temperature-dependent susceptibilities can be calculated. The applicability and performance of the program is shown exemplarily on a trinuclear transition metal (CoII VII CoII ) complex.

6.
Phys Chem Chem Phys ; 24(46): 28371-28380, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36385639

RESUMO

We have investigated the self-assembly of the graphene nanoribbon molecular precursor 10,10'-dibromo-9,9'-bianthryl (DBBA) on Au(111) with frequency modulation scanning force microscopy (FM-SFM) at room temperature combined with ab initio calculations. For low molecular coverages, the molecules aggregate along the substrate herringbone reconstruction main directions while remaining mobile. At intermediate coverage, two phases coexist, zigzag stripes of monomer chains and decorated herringbones. For high coverage, the molecules assemble in a dimer-striped phase. The adsorption behaviour of DBBA molecules and their interactions are discussed and compared with the results from ab initio calculations.

7.
J Phys Chem A ; 126(22): 3502-3510, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35617126

RESUMO

The structures of platinum cluster anions Pt6--Pt13- have been investigated by trapped ion electron diffraction. Structures were assigned by comparing experimental and simulated scattering functions using candidate structures obtained by density functional theory computations, including spin-orbit coupling. We find a structural evolution from planar structures (Pt6-, Pt7-) and amorphous-like structures (Pt7--Pt9-) to structures based on distorted tetrahedra (Pt9--Pt11-). Finally, Pt12- and Pt13- are based on hcp fragments. While the structural parameters are well described by density functional theory computations for all clusters studied, the predicted lowest energy structure is found in the experiment only for Pt6-. For larger clusters, higher energy isomers are necessary to obtain a fit to the scattering data.

8.
J Chem Phys ; 157(13): 134109, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209012

RESUMO

We report an approach to treat polarization effects in a one-dimensional (1D) environment using frozen-density embedding (FDE), suitable to compute response to electron loss or attachment as occurring in organic semiconductors during charge migration. The present work provides two key developments: (a) Local perturbations are computed avoiding an infinite repetition thereof and (b) a first-order equation-of-motion ansatz is used to compute polarization effects due to electron loss and attachment, ensuring an efficient calculation by avoiding open-shell calculations. In a first step, an unperturbed 1D molecular chain is equilibrated using FDE by translation of the center molecule. In a subsequent second step, long-range contributions are frozen and a local perturbation is introduced in the center subsystem. Freeze-thaw iterations are used to relax the electronic wavefunction of both the center subsystem and subsystems in an active region around the center subsystem, avoiding the need to translate the perturbation. The proposed scheme proves to be very efficient and allows for the calculation of charged tetraazaperopyrenes in 1D chains. Due to its efficiency, the new method is capable of providing wavefunction-based reference data relevant for electronic couplings in complex environments.

9.
Molecules ; 27(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164179

RESUMO

We report a theoretical study of the adsorption of a set of small molecules (C2H2, CO, CO2, O2, H2O, CH3OH, C2H5OH) on the metal centers of the "copper paddle-wheel"-a key structural motif of many MOFs. A systematic comparison between DFT of different rungs, single-reference post-HF methods (MP2, SOS-MP2, MP3, DLPNO-CCSD(T)), and multi-reference approaches (CASSCF, DCD-CAS(2), NEVPT2) is performed in order to find a methodology that correctly describes the complicated electronic structure of paddle-wheel structure together with a reasonable description of non-covalent interactions. Apart from comparison with literature data (experimental values wherever possible), benchmark calculations with DLPNO-MR-CCSD were also performed. Despite tested methods show qualitative agreement in the majority of cases, we showed and discussed reasons for quantitative differences as well as more fundamental problems of specific cases.

10.
Chemistry ; 27(61): 15127-15135, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34328235

RESUMO

Heterometallic complexes, combining metals of the outer rims of the d-block, for example lanthanides(III) (Ln) and coinage metals(I) (M) are scarcely reported, synthetically challenging and highly interesting in terms of their interactions. In this context, we synthesized hetero-bimetallic Ln-M compounds ligated by the phosphine functionalized amidinate system (N,N'-bis[(2-diphenylphosphino)phenyl]formamidinate, "dpfam"). The resulting compounds [dpfam3 LnM][OTf] (Ln = La, Nd and M = Ag, Au) feature a close proximity of the two metal centres and were investigated experimentally by photoluminescence spectroscopy and quantum chemical calculations. The latter showed rare La-Au interactions for the first excited state.

11.
Chemistry ; 27(61): 15085-15094, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34597423

RESUMO

We report three structurally related single ion Dy compounds using the pentadentate ligand 2,6-bis((E)-1-(2-(pyridin-2-yl)-hydrazineylidene)ethyl)pyridine (H2 dapp) [Dy(H2 dapp)(NO3 )2 ]NO3 (1), [Dy(H2 dapp)(OAc)2 ]Cl (2) and [Dy(H2 dapp)(NO3 )2 ]Cl0.92 (NO3 )0.08 (3). The (H2 dapp) occupies a helical twisted pentagonal equatorial arrangement with two anionic ligands in the axial positions. Further influence on the electronic and magnetic structure is provided by a closely associated counterion interacting with the central N-H group of the (H2 dapp). The slow relaxation of the magnetisation shows that the anionic acetates give the greatest slowing down of the magnetisation reversal. Further influence on the relaxation properties of compounds1 and 2 is the presence of short nitrate-nitrate intermolecular ligand contact opening further lattice relaxation pathways.

12.
J Chem Phys ; 154(10): 104114, 2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33722017

RESUMO

We present the combination of wavefunction frozen-density embedding (FDE) with a periodic repetition in one dimension (1D) for molecular systems in the KOALA program. In this periodic orbital-uncoupled FDE ansatz, no wavefunction overlap is taken into account, and only the electron density of the active subsystem is computed explicitly. This density is relaxed in the presence of the environment potential, which is obtained by translating the updated active subsystem density, yielding a fully self-consistent solution at convergence. Treating only one subsystem explicitly, the method allows for the calculation of local properties in condensed molecular systems, while no orbital band structure is obtained preventing the application, e.g., to systems with metallic bonding. In order to illustrate possible applications of the new implementation, selected case studies are presented, ranging from ground-state dipole moments using configuration interaction methods via excitation energies using time-dependent density-functional theory to ionization potentials obtained from equation-of-motion correlation methods. Different levels of approximations are assessed, revealing that an active subsystem consisting of two or three molecules leads to results that are converged with respect to the environment contributions.

13.
Langmuir ; 35(25): 8472-8481, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31198043

RESUMO

Owing to their extraordinary magnetic properties and low-cost production, iron oxide nanoparticles (IONs) are in the focus of research. In order to better understand interactions of IONs with biomolecules, a tool for the prediction of the propensity of different peptides to interact with IONs is of great value. We present an effective implicit surface model (EISM), which includes several interaction models. Electrostatic interactions, van der Waals interactions, and entropic effects are considered for the theoretical calculations. However, the most important parameter, a surface accessible area force field contribution term, derives directly from experimental results on the interactions of IONs and peptides. Data from binding experiments of ION agglomerates to different peptides immobilized on cellulose membranes have been used to parameterize the model. The work was carried out under defined environmental conditions; hence, effects because of changes, for example structure or solubility by changing the surroundings, are not included. EISM enables researchers to predict the binding of peptides to IONs, which we then verify with further peptide array experiments in an iterative optimization process also presented here. Negatively charged peptides were identified as best binders for IONs in Tris buffer. Furthermore, we investigated the constitution of peptides and how the amount and position of several amino acid side chains affect peptide-binding. The incorporation of glycine leads to higher binding scores compared to the incorporation of cysteine in negatively charged peptides.


Assuntos
Compostos Férricos/química , Compostos Férricos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
14.
J Phys Chem A ; 123(51): 10940-10946, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769986

RESUMO

We present a study of the structural evolution of palladium cluster anions in a size range from 55 to 147 atoms using a combination of trapped ion electron diffraction and density functional theory computations. We show that Pdn- clusters (n = 55, 65, 75, 85, 95, 105, and 147) change from an icosahedral motif at Pd55- to the bulk fcc motif at Pd147-. This size-dependent structure transition is probed experimentally at a temperature of 95 K and characterized by a continuously increasing fraction of fcc isomers over the considered size range showing a crossover to the fcc motif at n ≈ 90.

15.
J Phys Chem A ; 122(11): 2974-2982, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29490134

RESUMO

We have used action photofragmentation spectroscopy in the visible spectral range (410 to 650 nm) to investigate the optical properties of different monomeric and dimeric M(II)-meso-tetra-(4-sulfonatophenyl)-porphyrin (with M = Pd(II), Cu(II), Zn(II)) multianions isolated in the gas phase without solvent. In particular, we report the position of the Q-bands (S0 → S1 transitions) as a function of charge state, counterions, oligomerization, and dimer structure type. The results for the monomers (charge states = 4- and 3-, sodiated and protonated) are in good agreement with TDDFT calculations and condensed-phase spectra. For both homo and heterometallic dimers, photofragmentation spectra were recorded for two charge states, 5- and 3-, corresponding to coplanar and cofacial structure types, respectively. The fragmentation patterns observed for the dimers depend significantly on charge state, with fragmentation into monomers being dominant for the 5- species, while the 3- charge state predominantly fragments by SO2 loss. The monomer → dimer Q-band spectral shifts observed in the gas phase were compared with the optical properties of porphyrin aggregates in solution.

16.
J Phys Chem A ; 122(17): 4357-4365, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29630381

RESUMO

We performed a comprehensive gas-phase experimental and quantum-chemical study of the binding properties of molecular oxygen to iron and manganese porphyrin anions. Temperature-dependent ion-molecule reaction kinetics as probed in a Fourier-transform ion-cyclotron resonance mass spectrometer reveal that molecular oxygen is bound by, respectively, 40.8 ± 1.4 and 67.4 ± 2.2 kJ mol-1 to the FeII or MnII centers of isolated tetra(4-sulfonatophenyl)metalloporphyrin tetraanions. In contrast, FeIII and MnIII trianion homologues were found to be much less reactive-indicating an upper bound to their dioxygen binding energies of 34 kJ mol-1. We modeled the corresponding O2 adsorbates at the density functional theory and CASPT2 levels. These quantum-chemical calculations verified the stronger O2 binding on the FeII or MnII centers and suggested that O2 binds as a superoxide anion.

17.
Chemistry ; 23(31): 7402-7408, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28422329

RESUMO

The synthesis and characterisation of several metal complexes of a redox-active, mesityl(Mes)-substituted [1]phosphaferrocenophane, FcPMes (1), are reported. Cyclic voltammetry studies on the bimetallic complexes [M(κ1 P-1)(cod)Cl] (M=Rh: 2; M=Ir: 4), [Rh(κ1 P-1)2 (CO)Cl] (3) and [AuCl(κ1 P-1)] (5), in conjunction with DFT calculations, provided indications for a good electronic communication between the metal atoms. To confirm that the ferrocenophane unit might be able to electrochemically influence the reactivity of the coordinated transition metal, the rhodium complex 2 was employed as stimuli-responsive catalyst in the hydrosilylation of terminal alkynes. All reactions were greatly accelerated with in situ generated 2+ as a catalyst as compared to 2. Even more importantly, a markedly different selectivity was observed. Both factors were attributed to different mechanisms operating for 2 and 2+ (alternative Chalk-Harrod and Chalk-Harrod mechanism, respectively). DFT calculations revealed relatively large differences for the activation barriers for 2 and 2+ in the reductive elimination step of the classical Chalk-Harrod mechanism. Thus, the key to the understanding is a cooperative "oxidatively induced reductive elimination" step, which facilitates both a higher activity and a markedly different selectivity.

18.
Inorg Chem ; 56(11): 6056-6066, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28485955

RESUMO

Three air-stable Co(II) mononuclear complexes with different aromatic substituents have been prepared and structurally characterized by single-crystal X-ray diffraction. The mononuclear complexes [Co(H2L1)2]·2THF (1), [Co(HL2)2] (2), and [Co(H2L3)2]·CH2Cl2 (3) (where H3L1, H2L2, and H3L3 represent 3-hydroxy-naphthalene-2-carboxylic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, nicotinic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, and 2-hydroxy-benzoic acid (6-hydroxymethyl-pyridin-2-ylmethylene) hydrazide, respectively) feature a distorted mer octahedral coordination geometry. Detailed magnetic studies of 1-3 have been conducted using direct and alternating current magnetic susceptibility data. Field-induced slow magnetic relaxation was observed for these three complexes. There are few examples of such behavior in (distorted) octahedral coordination geometry (OC) Co(II) mononuclear complexes with uniaxial anisotropy. Analysis of the six-coordinate Co(II) mononuclear single-ion magnets (SIMs) in the literature using the SHAPE program revealed that they all show what is best described as distorted trigonal prismatic (TRP) coordination geometry, and in general, these show negative D zero-field splitting (ZFS) values. On the other hand, all the Co(II) mononuclear complexes displaying what is best approximated as distorted octahedral (OC) coordination geometry show positive D values. In the new Co(II) mononuclear complexes we describe here, there is an ambiguity, since the rigid tridentate ligands confer what is best described for an octahedral complex as a mer coordination geometry, but the actual shape of the first coordination sphere is between octahedral and trigonal prismatic. The negative D values observed experimentally and supported by high-level electronic structure calculations are thus in line with a trigonal prismatic geometry. However, a consideration of the rhombicity as indicated by the E value of the ZFS in conjunction with the SHAPE analysis shows that in this case it is difficult to distinguish between the OC and TRP descriptions.

19.
Inorg Chem ; 55(5): 2091-100, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26900764

RESUMO

Direct current (dc) and alternating current (ac) magnetic measurements have been performed on the three Ni(I) complexes: [NiCl(PPh3)3], [NiCl(PPh3)2]·C4H8O, and [Ni(N(SiMe3)2)(PPh3)2]. Fits of the dc magnetic data suggest an almost similar behavior of the three compounds, which display only moderate deviations from the spin-only values. The ac magnetic investigations reveal that the two complexes with trigonal planar coordination--[NiCl(PPh3)2]·C4H8O and [Ni(N(SiMe3)2)(PPh3)2]--display slow magnetic relaxation at low temperatures under applied dc fields, whereas tetrahedral [NiCl(PPh3)3] does not. Ground and excited states as well as magnetic data were calculated by ab initio wave function based multi-configurational methods, including dynamic correlation as well as spin-orbit coupling. The two trigonal planar complexes comprise well-isolated S = (1)/2 ground states, whereas two S = (1)/2 states with a splitting of less than 100 cm(-1) were found in the tetrahedral compound.

20.
Phys Chem Chem Phys ; 18(43): 30135-30143, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27777991

RESUMO

The single ion magnetic properties of Co(ii) are affected by the details of the coordination geometry of the ion. Here we show that a geometry close to trigonal prismatic which arises when the ligand 6,6'-((1Z)-((piperazine-1,4-diylbis(propane-3,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol) coordinates to Co(ii) does indeed lead to enhanced single-ion behaviour as has previously been predicted. Synthesis of the compound, structural information, and static as well as dynamic magnetic data are presented along with an analysis using quantum chemical ab initio calculations. Though the complex shows a slight deviation from an ideal trigonal prismatic coordination, the zero-field splitting as well as the g-tensor are strongly axial with D = -41 cm-1 and E < 0.01 cm-1. For the lowest Kramers doublet (S = 1/2) g∥ = 7.86 and g⊥ < 0.05 were found. In contrast, the second Kramers doublet possesses a rhombic g-tensor with g∥ = 2.75 and g⊥ = 4.35. Due to large spin-orbit coupling resulting in very different g tensors, it is not possible to simulate the temperature dependence of the magnetic susceptibility with a spin Hamiltonian of the form H = D(Sz2 - S(S + 1)/3) + E(Sx2 - Sy2) + µBgS·B using an effective spin S = 3/2. Calculations on model complexes show the influence of the coordinating atoms and the deviation from the ideal trigonal prismatic coordination. As the distortion is reduced towards idealised D3h, the zero field splitting increases and the g-tensor of the second Kramers doublet also becomes axial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA