Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Br J Nutr ; 124(3): 247-255, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32122411

RESUMO

Preliminary evidence has suggested that high-fat diets (HFD) enriched with SFA, but not MUFA, promote hyperinsulinaemia and pancreatic hypertrophy with insulin resistance. The objective of this study was to determine whether the substitution of dietary MUFA within a HFD could attenuate the progression of pancreatic islet dysfunction seen with prolonged SFA-HFD. For 32 weeks, C57BL/6J mice were fed either: (1) low-fat diet, (2) SFA-HFD or (3) SFA-HFD for 16 weeks, then switched to MUFA-HFD for 16 weeks (SFA-to-MUFA-HFD). Fasting insulin was assessed throughout the study; islets were isolated following the intervention. Substituting SFA with MUFA-HFD prevented the progression of hyperinsulinaemia observed in SFA-HFD mice (P < 0·001). Glucose-stimulated insulin secretion from isolated islets was reduced by SFA-HFD, yet not fully affected by SFA-to-MUFA-HFD. Markers of ß-cell identity (Ins2, Nkx6.1, Ngn3, Rfx6, Pdx1 and Pax6) were reduced, and islet inflammation was increased (IL-1ß, 3·0-fold, P = 0·007; CD68, 2·9-fold, P = 0·001; Il-6, 1·1-fold, P = 0·437) in SFA-HFD - effects not seen with SFA-to-MUFA-HFD. Switching to MUFA-HFD can partly attenuate the progression of SFA-HFD-induced hyperinsulinaemia, pancreatic inflammation and impairments in ß-cell function. While further work is required from a mechanistic perspective, dietary fat may mediate its effect in an IL-1ß-AMP-activated protein kinase α1-dependent fashion. Future work should assess the potential translation of the modulation of metabolic inflammation in man.


Assuntos
Dieta Hiperlipídica/métodos , Gorduras na Dieta/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/farmacologia , Hiperinsulinismo/dietoterapia , Animais , Modelos Animais de Doenças , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos
2.
J Neuroinflammation ; 15(1): 247, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30170611

RESUMO

BACKGROUND: Microglia are multifunctional cells that are primarily neuroprotective and a deficit in their functional integrity is likely to be a contributory factor in the deteriorating neuronal function that occurs with age and neurodegeneration. One aspect of microglial dysfunction is reduced phagocytosis, and this is believed to contribute to the accumulation of amyloid-ß (Aß) in Alzheimer's disease (AD). Therefore, improving phagocytosis should be beneficial in limiting the amyloidosis that characterises AD. METHODS: Here, we investigated whether an antibody that targets toll-like receptor (TLR)2 might attenuate the inflammatory and metabolic changes induced by lipopolysaccharide (LPS) and amyloid-ß. The impact on phagocytosis was assessed by immunohistochemistry. We evaluated the metabolic changes with the SeaHorse Extracellular Flux Analyser and studied the expression of key enzymes driving glycolysis by western blotting. For all experiments, statistical significance was determined by unpaired Student's t test and two-way analysis of variance (ANOVA). RESULTS: We have reported that, when exposed to an inflammatory stimulus, microglia switch their metabolism towards the metabolically- inefficient glycolysis; this potentially impacts on metabolically demanding functions like phagocytosis. Anti-TLR2 antibody increased phagocytosis of Aß in LPS + Aß-stimulated microglia and this was linked with the ability of the antibody to attenuate the LPS + Aß-triggered inflammasome activation. LPS + Aß increased glycolysis in microglia and increased the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)3, an enzyme that plays a key role in driving glycolysis; these effects were inhibited when cells were incubated with the anti-TLR2 antibody. The data also show that antibody treatment increased oxidative metabolism. CONCLUSIONS: Thus, microglia with an inflammatory phenotype, specifically cells in which the inflammasome is activated, are glycolytic; this may compromise the metabolic efficiency of microglia and thereby provide an explanation for the reduced phagocytic function of the cells. We propose that, by restoring oxidative metabolism and reducing inflammasome activation in microglia, phagocytic function is also restored.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anticorpos/farmacologia , Microglia/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Receptor 2 Toll-Like/imunologia , Peptídeos beta-Amiloides/farmacologia , Animais , Animais Recém-Nascidos , Arginase/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Córtex Cerebral/citologia , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Inseticidas/farmacologia , Lipopolissacarídeos/farmacologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Rotenona/farmacologia
3.
Circulation ; 133(19): 1838-50, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27081117

RESUMO

BACKGROUND: Acute inflammation impairs reverse cholesterol transport (RCT) and reduces high-density lipoprotein (HDL) function in vivo. This study hypothesized that obesity-induced inflammation impedes RCT and alters HDL composition, and investigated if dietary replacement of saturated (SFA) for monounsaturated (MUFA) fatty acids modulates RCT. METHODS AND RESULTS: Macrophage-to-feces RCT, HDL efflux capacity, and HDL proteomic profiling was determined in C57BL/6j mice following 24 weeks on SFA- or MUFA-enriched high-fat diets (HFDs) or low-fat diet. The impact of dietary SFA consumption and insulin resistance on HDL efflux function was also assessed in humans. Both HFDs increased plasma (3)H-cholesterol counts during RCT in vivo and ATP-binding cassette, subfamily A, member 1-independent efflux to plasma ex vivo, effects that were attributable to elevated HDL cholesterol. By contrast, ATP-binding cassette, subfamily A, member 1-dependent efflux was reduced after both HFDs, an effect that was also observed with insulin resistance and high SFA consumption in humans. SFA-HFD impaired liver-to-feces RCT, increased hepatic inflammation, and reduced ABC subfamily G member 5/8 and ABC subfamily B member 11 transporter expression in comparison with low-fat diet, whereas liver-to-feces RCT was preserved after MUFA-HFD. HDL particles were enriched with acute-phase proteins (serum amyloid A, haptoglobin, and hemopexin) and depleted of paraoxonase-1 after SFA-HFD in comparison with MUFA-HFD. CONCLUSIONS: Ex vivo efflux assays validated increased macrophage-to-plasma RCT in vivo after both HFDs but failed to capture differential modulation of hepatic cholesterol trafficking. By contrast, proteomics revealed the association of hepatic-derived inflammatory proteins on HDL after SFA-HFD in comparison with MUFA-HFD, which reflected differential hepatic cholesterol trafficking between groups. Acute-phase protein levels on HDL may serve as novel biomarkers of impaired liver-to-feces RCT in vivo.


Assuntos
Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácidos Graxos/administração & dosagem , Lipoproteínas HDL/genética , Proteômica/métodos , Adolescente , Adulto , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Ácidos Graxos/efeitos adversos , Ácidos Graxos Monoinsaturados/efeitos adversos , Feminino , Humanos , Lipoproteínas HDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/etiologia , Obesidade/metabolismo , Adulto Jovem
4.
Am J Physiol Endocrinol Metab ; 305(7): E834-44, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23921145

RESUMO

Emerging evidence has demonstrated that saturated fatty acids prime pro-IL-1ß production and inflammasome-mediated IL-1ß activation is critical in obesity-associated insulin resistance (IR). Nonetheless, IL-1 receptor I-deficient (IL-1RI(-/-)) mice develop mature-onset obesity despite consuming a low-fat diet (LFD). With this apparent contradiction, the present study evaluated whether IL-1RI(-/-) mice were protected against long-term (6 mo) high-fat diet (HFD)-induced IR. Male wild-type and IL-1RI(-/-) mice were fed LFD or HFD for 3 or 6 mo, and glucose and insulin tolerance tests were performed. Adipose insulin sensitivity, cytokine profiles, and adipocyte morphology were assessed. The adipogenic potential of stromal vascular fraction was determined. Hepatic lipid accumulation and insulin sensitivity were characterized. IL-1RI(-/-) mice developed glucose intolerance and IR after 6 mo HFD compared with 3 mo HFD, coincident with enhanced weight gain, hyperinsulinemia, and hyperleptinemia. The aggravated IR phenotype was associated with loss of adipose functionality, switch from adipocyte hyperplasia to hypertrophy and hepatosteatosis. Induction of adipogenic genes was reduced in IL-1RI(-/-) preadipocytes after 6 mo HFD compared with 3 mo HFD. Obese LFD-IL-1RI(-/-) mice exhibited preserved metabolic health. IL-1RI(-/-) mice develop glucose intolerance and IR after 6 mo HFD intervention. While mature-onset obesity is evident in LFD-IL-1RI(-/-) mice, the additional metabolic insult of HFD was required to drive adipose inflammation and systemic IR. These findings indicate an important interaction between dietary fat and IL-1, relevant to optimal metabolic health.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/etiologia , Resistência à Insulina/fisiologia , Receptores Tipo I de Interleucina-1/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Gorduras na Dieta/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Inflamação/genética , Inflamação/metabolismo , Insulina/sangue , Insulina/farmacologia , Leptina/sangue , Masculino , Camundongos , Camundongos Knockout , Receptores Tipo I de Interleucina-1/genética
5.
Sci Rep ; 9(1): 4034, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858427

RESUMO

Inflammation and metabolism are intricately linked during inflammatory diseases in which activation of the nucleotide-binding domain-like receptors Family Pyrin Domain Containing 3 (NLRP3) inflammasome, an innate immune sensor, is critical. Several factors can activate the NLRP3 inflammasome, but the nature of the link between NLRP3 inflammasome activation and metabolism remains to be thoroughly explored. This study investigates whether the small molecule inhibitor of the NLRP3 inflammasome, MCC950, modulates the lipopolysaccharide (LPS) -and amyloid-ß (Aß)-induced metabolic phenotype and inflammatory signature in macrophages. LPS + Aß induced IL-1ß secretion, while pre-treatment with MCC950 inhibited this. LPS + Aß also upregulated IL-1ß mRNA and supernatant concentrations of TNFα, IL-6 and IL-10, however these changes were insensitive to MCC950, confirming that MCC950 specifically targets inflammasome activation in BMDMs. LPS + Aß increased glycolysis and the glycolytic enzyme, PFKFB3, and these effects were decreased by MCC950. These findings suggest that NLRP3 inflammasome activation may play a role in modulating glycolysis. To investigate this further, the effect of IL-1ß on glycolysis was assessed. IL-1ß stimulated glycolysis and PFKFB3, mimicking the effect of LPS + Aß and adding to the evidence that inflammasome activation impacts on metabolism. This contention was supported by the finding that the LPS + Aß-induced changes in glycolysis and PFKFB3 were attenuated in BMDMs from NLRP3-deficient and IL-1R1-deficient mice. Consistent with a key role for PFKFB3 is the finding that the PFKFB3 inhibitor, 3PO, attenuated the LPS + Aß-induced glycolysis. The data demonstrate that activation of the NLRP3 inflammasome, and the subsequent release of IL-1ß, play a key role in modulating glycolysis via PFKFB3. Reinstating metabolic homeostasis by targeting the NLRP3 inflammasome-PFKFB3 axis may provide a novel therapeutic target for treatment of acute and chronic disease.


Assuntos
Glicólise/efeitos dos fármacos , Inflamassomos , Inflamação/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fosfofrutoquinase-2/metabolismo , Peptídeos beta-Amiloides , Animais , Células Cultivadas , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Indenos , Inflamassomos/antagonistas & inibidores , Inflamassomos/fisiologia , Inflamação/induzido quimicamente , Interleucina-1beta/imunologia , Lipopolissacarídeos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Fosfofrutoquinase-2/antagonistas & inibidores , Sulfonamidas , Sulfonas/farmacologia
6.
J Neuroimmune Pharmacol ; 12(4): 670-681, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28620801

RESUMO

It is well established that infection has a significant detrimental effect on patients with Alzheimer's disease (AD), accelerating cognitive decline and, even in healthy ageing individuals, increasing amyloid-ß (Aß) accumulation in the brain. In animal models of AD infection can also cause damage, with evidence of increased neuroinflammation, amyloid pathology and deterioration of cognitive function. These changes are against a backdrop of an age- and AD-related increase in susceptibility to infection. Here we set out to determine whether FTY720, a molecule that binds sphingosine-1-phosphate (S1P) receptors and with known immunosuppressant effects mediating its therapeutic action in multiple sclerosis (MS), might modulate the impact of infection in a mouse model of AD. Transgenic mice that overexpress amyloid precursor protein (APP) and presenilin 1 (PS1; APP/PS1 mice) and their littermates were/were not infected with Bordetella pertussis and were treated orally with FTY720 or vehicle beginning 3 days before infection. Infection increased astrocytic activation and enhanced blood brain barrier (BBB) permeability and these changes were attenuated in FTY720-treated B. pertussis-infected mice. Significantly, infection increased Aß containing plaques and soluble Aß and these infection-related changes were also attenuated in FTY720-treated B. pertussis-infected mice. The data suggest that this effect results from an FTY720-induced increase in Aß phagocytosis by astrocytes. FTY720 did not impact on genotype-related changes in the absence of an infection indicating that its potential usefulness is restricted to reducing the impact of acute inflammatory stimuli in AD.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Astrócitos/efeitos dos fármacos , Infecções por Bordetella/complicações , Cloridrato de Fingolimode/farmacologia , Imunossupressores/farmacologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Bordetella pertussis , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia , Presenilina-1/genética
7.
Mol Nutr Food Res ; 60(11): 2421-2432, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27390025

RESUMO

SCOPE: Activation of the nod-like receptor protein 3 (NLRP3) inflammasome is required for IL-1ß release and is a key component of obesity-induced inflammation and insulin resistance. This study hypothesized that supplementation with a casein hydrolysate (CH) would attenuate NLRP3 inflammasome mediated IL-1ß secretion in adipose tissue (AT) and improve obesity-induced insulin resistance. METHODS AND RESULTS: J774.2 macrophages were LPS primed (10 ng/mL) and stimulated with adenosine triphosphate (5 mM) to assess NLRP3 inflammasome activity. Pretreatment with CH (1 mg/mL; 48 h) reduced caspase-1 activity and decreased IL-1ß secretion from J774.2 macrophages in vitro. 3T3-L1 adipocytes cultured with conditioned media from CH-pretreated J774.2 macrophages demonstrated increased phosphorylated (p)AKT expression and improved insulin sensitivity. C57BL/6JOLaHsd mice were fed chow or high fat diet (HFD) for 12 wk ± CH resuspended in water (0.5% w/v). CH supplementation improved glucose tolerance in HFD-fed mice as determined by glucose tolerance test. CH supplementation increased insulin-stimulated pAKT protein levels in AT, liver, and muscle after HFD. Cytokine secretion was measured from AT and isolated bone marrow macrophages cultured ex vivo. CH supplementation attenuated IL-1ß, tumor necrosis factor alpha (TNF-α) and IL-6 secretion from AT and IL-1ß, IL-18, and TNF-α from bone marrow macrophages following adenosine triphosphate stimulation ex vivo. CONCLUSION: This novel CH partially protects mice against obesity-induced hyperglycemia coincident with attenuated IL-1ß secretion and improved insulin signaling.


Assuntos
Tecido Adiposo/metabolismo , Caseínas/farmacologia , Inflamassomos/metabolismo , Obesidade/metabolismo , Células 3T3-L1 , Animais , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Dieta Hiperlipídica/efeitos adversos , Hiperglicemia/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas NLR , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-24947613

RESUMO

Current interest in obesity has established a clear link between diets high in fat and metabolic complications such as Type 2 Diabetes. Dietary fats and their metabolites act as stressors to induce a pro-inflammatory immune response which dysregulates many essential metabolic functions. Recent research suggests that different dietary fats may have varying inflammatory potentials. However the molecular mechanisms involved in the cross talk between dietary fat composition and the 'immuno-metabolism' remain enigmatic. It is probable that lipids, and their derivatives, differentially regulate IL-1ß activation and inflammatory signaling via the NLRP3 inflammasome complex. Also from the translational perspective, certain nutrient sensitive genotypes and potential gene nutrient interactions offer the possibility to reduce inflammation through personalized nutrition approaches.


Assuntos
Ácidos Graxos/fisiologia , Tecido Adiposo/metabolismo , Animais , Metabolismo Energético , Humanos , Imunidade Celular , Inflamassomos/fisiologia , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Obesidade/etiologia , Obesidade/imunologia , Obesidade/metabolismo
9.
Diabetes ; 64(6): 2116-28, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25626736

RESUMO

Saturated fatty acid (SFA) high-fat diets (HFDs) enhance interleukin (IL)-1ß-mediated adipose inflammation and insulin resistance. However, the mechanisms by which different fatty acids regulate IL-1ß and the subsequent effects on adipose tissue biology and insulin sensitivity in vivo remain elusive. We hypothesized that the replacement of SFA for monounsaturated fatty acid (MUFA) in HFDs would reduce pro-IL-1ß priming in adipose tissue and attenuate insulin resistance via MUFA-driven AMPK activation. MUFA-HFD-fed mice displayed improved insulin sensitivity coincident with reduced pro-IL-1ß priming, attenuated adipose IL-1ß secretion, and sustained adipose AMPK activation compared with SFA-HFD-fed mice. Furthermore, MUFA-HFD-fed mice displayed hyperplastic adipose tissue, with enhanced adipogenic potential of the stromal vascular fraction and improved insulin sensitivity. In vitro, we demonstrated that the MUFA oleic acid can impede ATP-induced IL-1ß secretion from lipopolysaccharide- and SFA-primed cells in an AMPK-dependent manner. Conversely, in a regression study, switching from SFA- to MUFA-HFD failed to reverse insulin resistance but improved fasting plasma insulin levels. In humans, high-SFA consumers, but not high-MUFA consumers, displayed reduced insulin sensitivity with elevated pycard-1 and caspase-1 expression in adipose tissue. These novel findings suggest that dietary MUFA can attenuate IL-1ß-mediated insulin resistance and adipose dysfunction despite obesity via the preservation of AMPK activity.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Proteínas de Transporte/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Monoinsaturados/farmacologia , Resistência à Insulina/fisiologia , Interleucina-1beta/metabolismo , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
10.
PLoS One ; 9(11): e113369, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25412423

RESUMO

Macrophage infiltration is a critical determinant of high-fat diet induced adipose tissue inflammation and insulin resistance. The precise mechanisms underpinning the initiation of macrophage recruitment and activation are unclear. Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, displays chemokine-like properties. Circulating MIF levels are elevated during obesity however its role in high-fat diet induced adipose inflammation and insulin resistance remains elusive. Wildtype and MIF-/- C57Bl\6J mice were fed chow or high-fat diet. Body weight and food intake was assessed. Glucose homeostasis was monitored by glucose and insulin tolerance tests. Adipose tissue macrophage recruitment and adipose tissue insulin sensitivity was evaluated. Cytokine secretion from stromal vascular fraction, adipose explants and bone marrow macrophages was measured. Inflammatory signature and insulin sensitivity of 3T3-L1-adipocytes co-cultured with wildtype and MIF-/- macrophage was quantified. Hepatic triacylglyceride levels were assessed. MIF-/- exhibited reduced weight gain. Age and weight-matched obese MIF-/- mice exhibited improved glucose homeostasis coincident with reduced adipose tissue M1 macrophage infiltration. Obese MIF-/- stromal vascular fraction secreted less TNFα and greater IL-10 compared to wildtype. Activation of JNK was impaired in obese MIF-/-adipose, concomitant with pAKT expression. 3T3-L1-adipocytes cultured with MIF-/- macrophages had reduced pro-inflammatory cytokine secretion and improved insulin sensitivity, effects which were also attained with MIF inhibitor ISO-1. MIF-/- liver exhibited reduced hepatic triacyglyceride accumulation, enhanced pAKT expression and reduced NFκB activation. MIF deficiency partially protects from high-fat diet induced insulin resistance by attenuating macrophage infiltration, ameliorating adipose inflammation, which improved adipocyte insulin resistance ex vivo. MIF represents a potential therapeutic target for treatment of high-fat diet induced insulin resistance.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/imunologia , Inflamação/imunologia , Oxirredutases Intramoleculares/deficiência , Fatores Inibidores da Migração de Macrófagos/deficiência , Macrófagos/imunologia , Obesidade/imunologia , Células 3T3 , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Ingestão de Alimentos , Fígado Gorduroso/prevenção & controle , Resistência à Insulina , Macrófagos/citologia , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-23675368

RESUMO

Obesity and associated chronic inflammation initiate a state of insulin resistance (IR). The secretion of chemoattractants such as MCP-1 and MIF and of cytokines IL-6, TNF-α, and IL-1ß, draw immune cells including dendritic cells, T cells, and macrophages into adipose tissue (AT). Dysfunctional AT lipid metabolism leads to increased circulating free fatty acids, initiating inflammatory signaling cascades in the population of infiltrating cells. A feedback loop of pro-inflammatory cytokines exacerbates this pathological state, driving further immune cell infiltration and cytokine secretion and disrupts the insulin signaling cascade. Disruption of normal AT function is causative of defects in hepatic and skeletal muscle glucose homeostasis, resulting in systemic IR and ultimately the development of type 2 diabetes. Pharmaceutical strategies that target the inflammatory milieu may have some potential; however there are a number of safety concerns surrounding such pharmaceutical approaches. Nutritional anti-inflammatory interventions could offer a more suitable long-term alternative; whilst they may be less potent than some pharmaceutical anti-inflammatory agents, this may be advantageous for long-term therapy. This review will investigate obese AT biology, initiation of the inflammatory, and insulin resistant environment; and the mechanisms through which dietary anti-inflammatory components/functional nutrients may be beneficial.

12.
Proc Nutr Soc ; 71(4): 622-33, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22914223

RESUMO

High-fat diet (HFD)-induced obesity has emerged as a state of chronic low-grade inflammation characterised by a progressive infiltration of immune cells, particularly macrophages, into obese adipose tissue. Adipose tissue macrophages (ATM) present immense plasticity. In early obesity, M2 anti-inflammatory macrophages acquire an M1 pro-inflammatory phenotype. Pro-inflammatory cytokines including TNF-α, IL-6 and IL-1ß produced by M1 ATM exacerbate local inflammation promoting insulin resistance (IR), which consequently, can lead to type-2 diabetes mellitus (T2DM). However, the triggers responsible for ATM recruitment and activation are not fully understood. Adipose tissue-derived chemokines are significant players in driving ATM recruitment during obesity. Macrophage migration inhibitory factor (MIF), a chemokine-like inflammatory regulator, is enhanced during obesity and is directly associated with the degree of peripheral IR. This review focuses on the functional role of macrophages in obesity-induced IR and highlights the importance of the unique inflammatory cytokine MIF in propagating obesity-induced inflammation and IR. Given MIF chemotactic properties, MIF may be a primary candidate promoting ATM recruitment during obesity. Manipulating MIF inflammatory activities in obesity, using pharmacological agents or functional foods, may be therapeutically beneficial for the treatment and prevention of obesity-related metabolic diseases.


Assuntos
Tecido Adiposo/metabolismo , Quimiotaxia , Inflamação/metabolismo , Resistência à Insulina/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Tecido Adiposo/imunologia , Dieta Hiperlipídica/efeitos adversos , Humanos , Inflamação/etiologia , Inflamação/imunologia , Obesidade/complicações , Obesidade/imunologia
13.
Mol Nutr Food Res ; 56(8): 1212-22, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22700321

RESUMO

SCOPE: Inflammasome-mediated inflammation is a critical regulator of obesity-induced insulin resistance (IR). We hypothesized that saturated fatty acids (SFA) directly prime the NLRP3 inflammasome via TLR4 concurrent with IR. We focused on dendritic cells (DCs) (CD11c(+) CD11b(+) F4/80(-) ), which are recruited into obese adipose tissue following high-fat diet (HFD) challenge and are a key cell in inflammasome biology. METHODS AND RESULTS: C57BL/6 mice were fed HFD for 16 weeks (45% kcal palm oil), glucose homeostasis was monitored by glucose and insulin tolerance tests. Stromal vascular fraction (SVF) cells were isolated from adipose and analyzed for CD11c(+) CD11b(+) F480(-) DC. Following coculture with bone marrow derived DC (BMDC) insulin-stimulated (3) H-glucose transport into adipocytes, IL-1ß secretion and caspase-1 activation was monitored. BMDCs primed with LPS (100 ng/mL), linoleic acid (LA; 200 µM), or palmitic acid (PA; 200 µM) were used to monitor inflammasome activation. We demonstrated significant infiltration of DCs into adipose after HFD. HFD-derived DCs reduce adipocyte insulin sensitivity upon coculture co-incident with enhanced adipocyte caspase-1 activation/IL-1ß secretion. HFD-derived DCs are skewed toward a pro-inflammatory phenotype with increased IL-1ß secretion, IL-1R1, TLR4, and caspase-1 expression. Complementary in vitro experiments demonstrate that TLR4 is critical in propagating SFA-mediated inflammasome activation. CONCLUSION: SFA represent metabolic triggers priming the inflammasome, promoting adipocyte inflammation/IR, suggesting direct effects of SFA on inflammasome activation via TLR4.


Assuntos
Proteínas de Transporte/metabolismo , Células Dendríticas/efeitos dos fármacos , Ácidos Graxos/farmacologia , Inflamassomos/efeitos dos fármacos , Resistência à Insulina/fisiologia , Receptor 4 Toll-Like/metabolismo , Células 3T3-L1 , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Caspase 1/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Células Dendríticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/farmacologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Ácido Linoleico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA