Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Nature ; 628(8006): 145-153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538785

RESUMO

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Assuntos
Região CA1 Hipocampal , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Inflamação , Memória , Receptor Toll-Like 9 , Animais , Feminino , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/patologia , Região CA1 Hipocampal/fisiologia , Centrossomo/metabolismo , Disfunção Cognitiva/genética , Condicionamento Clássico , Matriz Extracelular/metabolismo , Medo , Instabilidade Genômica/genética , Histonas/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Memória/fisiologia , Transtornos Mentais/genética , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Neurônios/metabolismo , Neurônios/patologia , Membrana Nuclear/patologia , Receptor Toll-Like 9/deficiência , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
2.
EMBO J ; 43(8): 1420-1444, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38528182

RESUMO

Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.


Assuntos
MicroRNAs , Esquizofrenia , Animais , Humanos , Camundongos , Microglia/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Esquizofrenia/genética
3.
EMBO J ; 41(1): e106459, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34806773

RESUMO

In mammals, histone 3 lysine 4 methylation (H3K4me) is mediated by six different lysine methyltransferases. Among these enzymes, SETD1B (SET domain containing 1b) has been linked to syndromic intellectual disability in human subjects, but its role in the mammalian postnatal brain has not been studied yet. Here, we employ mice deficient for Setd1b in excitatory neurons of the postnatal forebrain, and combine neuron-specific ChIP-seq and RNA-seq approaches to elucidate its role in neuronal gene expression. We observe that Setd1b controls the expression of a set of genes with a broad H3K4me3 peak at their promoters, enriched for neuron-specific genes linked to learning and memory function. Comparative analyses in mice with conditional deletion of Kmt2a and Kmt2b histone methyltransferases show that SETD1B plays a more pronounced and potent role in regulating such genes. Moreover, postnatal loss of Setd1b leads to severe learning impairment, suggesting that SETD1B-dependent regulation of H3K4me levels in postnatal neurons is critical for cognitive function.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Aprendizagem/fisiologia , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética , Hipocampo/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Integrases/metabolismo , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/metabolismo , Sítio de Iniciação de Transcrição , Transcriptoma/genética
4.
Proc Natl Acad Sci U S A ; 120(9): e2204933120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812208

RESUMO

N6-methyladenosine (m6A) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of m6A in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the m6A epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice. We observed a decrease in m6A levels in aged animals. Comparative analysis of cingulate cortex (CC) brain tissue from cognitively intact human subjects and Alzheimer's disease (AD) patients showed decreased m6A RNA methylation in AD patients. m6A changes common to brains of aged mice and AD patients were found in transcripts linked to synaptic function including calcium/calmodulin-dependent protein kinase 2 (CAMKII) and AMPA-selective glutamate receptor 1 (Glua1). We used proximity ligation assays to show that reduced m6A levels result in decreased synaptic protein synthesis as exemplified by CAMKII and GLUA1. Moreover, reduced m6A levels impaired synaptic function. Our results suggest that m6A RNA methylation controls synaptic protein synthesis and may play a role in cognitive decline associated with aging and AD.


Assuntos
Doença de Alzheimer , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Humanos , Camundongos , Animais , Idoso , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Doença de Alzheimer/metabolismo , Envelhecimento/metabolismo , RNA/metabolismo , Mamíferos/genética
5.
Proc Natl Acad Sci U S A ; 120(2): e2122467120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598943

RESUMO

Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus. At a genome-wide level, FOXG1 i) both represses and activates transcription, ii) binds mainly to enhancer regions, iii) reconfigures the epigenetic landscape through bidirectional alteration of H3K27ac, H3K4me3, and chromatin accessibility, and iv) operates synergistically with NEUROD1. Interestingly, we could not detect a clear hierarchy of FOXG1 and NEUROD1, but instead, provide the evidence that they act in a highly cooperative manner to control neuronal maturation. Genes affected by the chromatin alterations impact synaptogenesis and axonogenesis. Inhibition of histone deacetylases partially rescues transcriptional alterations upon FOXG1 reduction. This integrated multiomics view of changes upon FOXG1 reduction reveals an unprecedented multimodality of FOXG1 functions converging on neuronal maturation. It fuels therapeutic options based on epigenetic drugs to alleviate, at least in part, neuronal dysfunction.


Assuntos
Fatores de Transcrição Forkhead , Síndrome de Rett , Camundongos , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Síndrome de Rett/genética , Epigênese Genética , Cromatina/genética , Cromatina/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
6.
EMBO J ; 40(3): e103701, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319920

RESUMO

SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.


Assuntos
Redes Reguladoras de Genes , Hipocampo/citologia , Deficiência Intelectual/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Esquizofrenia/genética , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Núcleo Celular/metabolismo , Plasticidade Celular , Células Cultivadas , Cognição , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Esquizofrenia/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
7.
Development ; 148(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33462115

RESUMO

Fine-tuned gene expression is crucial for neurodevelopment. The gene expression program is tightly controlled at different levels, including RNA decay. N6-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for brain development. However, m6A methylation impacts not only RNA stability, but also other RNA metabolism processes. How RNA decay contributes to brain development is largely unknown. Here, we show that Exosc10, a RNA exonuclease subunit of the RNA exosome complex, is indispensable for forebrain development. We report that cortical cells undergo overt apoptosis, culminating in cortical agenesis upon conditional deletion of Exosc10 in mouse cortex. Mechanistically, Exosc10 directly binds and degrades transcripts of the P53 signaling-related genes, such as Aen and Bbc3. Overall, our findings suggest a crucial role for Exosc10 in suppressing the P53 pathway, in which the rapid turnover of the apoptosis effectors Aen and Bbc3 mRNAs is essential for cell survival and normal cortical histogenesis.


Assuntos
Sobrevivência Celular/fisiologia , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Prosencéfalo/crescimento & desenvolvimento , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Biologia Computacional , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Prosencéfalo/patologia , RNA/metabolismo , Estabilidade de RNA , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor
8.
Nature ; 556(7701): 332-338, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643512

RESUMO

Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident macrophages (microglia) that persists for at least six months. Strikingly, in a mouse model of Alzheimer's pathology, immune training exacerbates cerebral ß-amyloidosis and immune tolerance alleviates it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results identify immune memory in the brain as an important modifier of neuropathology.


Assuntos
Encéfalo/imunologia , Encéfalo/patologia , Imunidade Inata , Memória Imunológica , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/patologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Amiloidose/imunologia , Amiloidose/patologia , Animais , Modelos Animais de Doenças , Epigênese Genética , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Tolerância Imunológica , Inflamação/genética , Inflamação/imunologia , Masculino , Camundongos , Microglia/imunologia , Microglia/metabolismo , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia
9.
EMBO J ; 38(17): e100481, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31304985

RESUMO

Regulation of adult neural stem cell (NSC) number is critical for lifelong neurogenesis. Here, we identified a post-transcriptional control mechanism, centered around the microRNA 204 (miR-204), to control the maintenance of quiescent (q)NSCs. miR-204 regulates a spectrum of transcripts involved in cell cycle regulation, neuronal migration, and differentiation in qNSCs. Importantly, inhibition of miR-204 function reduced the number of qNSCs in the subependymal zone (SEZ) by inducing pre-mature activation and differentiation of NSCs without changing their neurogenic potential. Strikingly, we identified the choroid plexus of the mouse lateral ventricle as the major source of miR-204 that is released into the cerebrospinal fluid to control number of NSCs within the SEZ. Taken together, our results describe a novel mechanism to maintain adult somatic stem cells by a niche-specific miRNA repressing activation and differentiation of stem cells.


Assuntos
Plexo Corióideo/química , MicroRNAs/genética , Células-Tronco Neurais/citologia , Adulto , Animais , Ciclo Celular , Diferenciação Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , MicroRNAs/líquido cefalorraquidiano , Pessoa de Meia-Idade , Células-Tronco Neurais/química , Nicho de Células-Tronco
10.
Cell Tissue Res ; 392(1): 301-306, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36536226

RESUMO

The development of the real-time quaking-induced conversion (RT-QuIC), an in vitro protein misfolding amplification assay, was an innovation in the scientific field of protein misfolding diseases. In prion diseases, these types of assays imitate the pathological conversion of the cellular prion protein (PrPC) into a protease-resistant and/or amyloid form of PrP, called PrP resistant (PrPRes). The RT-QuIC is an automatic assay system based on real-time measuring of thioflavin-T (Th-T) incorporation into amyloid fibrils using shaking for disaggregation. It has already been applied in diagnostics, drug pre-screening, and to distinguish between different prion strains. The seeded conversion efficiency and the diagnostic accuracy of the RT-QuIC assay strongly depend on the kind of recombinant PrP (rec PrP) substrate. The DNA sequences of different substrates may originate from different species, such as human, bank vole, and hamster, or from a combination of two species, e.g., hamster-sheep chimera. In routine use, either full-length (FL) or truncated substrates are applied which can accelerate the conversion reaction, e.g., to a more sensitive version of RT-QuIC assay. In the present review, we provide an overview on the different types of PrP substrates (FL and truncated forms), recapitulate the production and purification process of different rec PrP substrates, and discuss the diagnostic value of CSF RT-QuIC in human prion disease diagnostics.


Assuntos
Síndrome de Creutzfeldt-Jakob , Príons , Cricetinae , Humanos , Animais , Ovinos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Príons/metabolismo , Proteínas Priônicas/metabolismo
11.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768211

RESUMO

Schizophrenia (SZ) is a serious mental disorder that is typically treated with antipsychotic medication. Treatment-resistant schizophrenia (TRS) is the condition where symptoms remain after pharmacological intervention, resulting in long-lasting functional and social impairments. As the identification and treatment of a TRS patient requires previous failed treatments, early mechanisms of detection are needed in order to quicken the access to effective therapy, as well as improve treatment adherence. In this study, we aim to find a microRNA (miRNA) signature for TRS, as well as to shed some light on the molecular pathways potentially involved in this severe condition. To do this, we compared the blood miRNAs of schizophrenia patients that respond to medication and TRS patients, thus obtaining a 16-miRNA TRS profile. Then, we assessed the ability of this signature to separate responders and TRS patients using hierarchical clustering, observing that most of them are grouped correctly (~70% accuracy). We also conducted a network, pathway analysis, and bibliography search to spot molecular pathways potentially altered in TRS. We found that the response to stress seems to be a key factor in TRS and that proteins p53, SIRT1, MDM2, and TRIM28 could be the potential mediators of such responses. Finally, we suggest a molecular pathway potentially regulated by the miRNAs of the TRS profile.


Assuntos
Antipsicóticos , MicroRNAs , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/diagnóstico , MicroRNAs/genética , MicroRNAs/uso terapêutico , Esquizofrenia Resistente ao Tratamento , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Resistência a Medicamentos/genética
12.
Mov Disord ; 37(1): 39-51, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448510

RESUMO

BACKGROUND: The cellular prion protein (PrPC ) is a membrane-bound, multifunctional protein mainly expressed in neuronal tissues. Recent studies indicate that the native trafficking of PrPC can be misused to internalize misfolded amyloid beta and α-synuclein (aSyn) oligomers. OBJECTIVES: We define PrPC 's role in internalizing misfolded aSyn in α-synucleinopathies and identify further involved proteins. METHODS: We performed comprehensive behavioral studies on four transgenic mouse models (ThySyn and ThySynPrP00, TgM83 and TgMPrP00) at different ages. We developed PrPC -(over)-expressing cell models (cell line and primary cortical neurons), used confocal laser microscopy to perform colocalization studies, applied mass spectrometry to identify interactomes, and determined disassociation constants using surface plasmon resonance (SPR) spectroscopy. RESULTS: Behavioral deficits (memory, anxiety, locomotion, etc.), reduced lifespans, and higher oligomeric aSyn levels were observed in PrPC -expressing mice (ThySyn and TgM83), but not in homologous Prnp ablated mice (ThySynPrP00 and TgMPrP00). PrPC colocalized with and facilitated aSyn (oligomeric and monomeric) internalization in our cell-based models. Glimepiride treatment of PrPC -overexpressing cells reduced aSyn internalization in a dose-dependent manner. SPR analysis showed that the binding affinity of PrPC to monomeric aSyn was lower than to oligomeric aSyn. Mass spectrometry-based proteomic studies identified clathrin in the immunoprecipitates of PrPC and aSyn. SPR was used to show that clathrin binds to recombinant PrP, but not aSyn. Experimental disruption of clathrin-coated vesicles significantly decreased aSyn internalization. CONCLUSION: PrPC 's native trafficking can be misused to internalize misfolded aSyn through a clathrin-based mechanism, which may facilitate the spreading of pathological aSyn. Disruption of aSyn-PrPC binding is, therefore, an appealing therapeutic target in α-synucleinopathies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Sinucleinopatias , alfa-Sinucleína , Peptídeos beta-Amiloides , Animais , Camundongos , Proteínas Priônicas , Proteômica , alfa-Sinucleína/metabolismo
13.
Cell Mol Life Sci ; 79(1): 55, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34913091

RESUMO

Epidemiological studies indicate that the consumption of caffeine, the most commonly ingested psychoactive substance found in coffee, tea or soft drinks, reduces the risk of developing Alzheimer's disease (AD). Previous treatment studies with transgenic AD mouse models reported a reduced amyloid plaque load and an amelioration of behavioral deficits. It has been further shown that moderate doses of caffeine have the potential to attenuate the health burden in preclinical mouse models of a variety of brain disorders (reviewed in Cunha in J Neurochem 139:1019-1055, 2016). In the current study, we assessed whether long-term caffeine consumption affected hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. Treatment over a 4-month period reduced hippocampal neuron loss, rescued learning and memory deficits, and ameliorated impaired neurogenesis. Neuron-specific RNA sequencing analysis in the hippocampus revealed an altered expression profile distinguished by the up-regulation of genes linked to synaptic function and processes, and to neural progenitor proliferation. Treatment of 5xFAD mice, which develop prominent amyloid pathology, with the same paradigm also rescued behavioral deficits but did not affect extracellular amyloid-ß (Aß) levels or amyloid precursor protein (APP) processing. These findings challenge previous assumptions that caffeine is anti-amyloidogenic and indicate that the promotion of neurogenesis might play a role in its beneficial effects.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Cafeína/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Placa Amiloide/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia
14.
Hum Mol Genet ; 28(1): 31-50, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219847

RESUMO

Alpha-synuclein (aSyn) is a central player in Parkinson's disease (PD) but the precise molecular mechanisms underlying its pathogenicity remain unclear. It has recently been suggested that nuclear aSyn may modulate gene expression, possibly via interactions with DNA. However, the biological behavior of aSyn in the nucleus and the factors affecting its transcriptional role are not known. Here, we investigated the mechanisms underlying aSyn-mediated transcription deregulation by assessing its effects in the nucleus and the impact of phosphorylation in these dynamics. We found that aSyn induced severe transcriptional deregulation, including the downregulation of important cell cycle-related genes. Importantly, transcriptional deregulation was concomitant with reduced binding of aSyn to DNA. By forcing the nuclear presence of aSyn in the nucleus (aSyn-NLS), we found the accumulation of high molecular weight aSyn species altered gene expression and reduced toxicity when compared with the wild-type or exclusively cytosolic protein. Interestingly, nuclear localization of aSyn, and the effect on gene expression and cytotoxicity, was also modulated by phosphorylation on serine 129. Thus, we hypothesize that the role of aSyn on gene expression and, ultimately, toxicity, may be modulated by the phosphorylation status and nuclear presence of different aSyn species. Our findings shed new light onto the subcellular dynamics of aSyn and unveil an intricate interplay between subcellular location, phosphorylation and toxicity, opening novel avenues for the design of future strategies for therapeutic intervention in PD and other synucleinopathies.


Assuntos
alfa-Sinucleína/metabolismo , alfa-Sinucleína/fisiologia , Animais , Linhagem Celular , Núcleo Celular , Proteínas de Ligação a DNA , Regulação para Baixo , Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Sinais de Localização Nuclear/fisiologia , Doença de Parkinson/patologia , Fosforilação , Cultura Primária de Células , Ratos
15.
EMBO J ; 36(19): 2815-2828, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768717

RESUMO

Age-associated memory decline is due to variable combinations of genetic and environmental risk factors. How these risk factors interact to drive disease onset is currently unknown. Here we begin to elucidate the mechanisms by which post-traumatic stress disorder (PTSD) at a young age contributes to an increased risk to develop dementia at old age. We show that the actin nucleator Formin 2 (Fmn2) is deregulated in PTSD and in Alzheimer's disease (AD) patients. Young mice lacking the Fmn2 gene exhibit PTSD-like phenotypes and corresponding impairments of synaptic plasticity, while the consolidation of new memories is unaffected. However, Fmn2 mutant mice develop accelerated age-associated memory decline that is further increased in the presence of additional risk factors and is mechanistically linked to a loss of transcriptional homeostasis. In conclusion, our data present a new approach to explore the connection between AD risk factors across life span and provide mechanistic insight to the processes by which neuropsychiatric diseases at a young age affect the risk for developing dementia.


Assuntos
Demência/genética , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/genética , Adulto , Idade de Início , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Estudos de Casos e Controles , Demência/epidemiologia , Demência/psicologia , Forminas , Humanos , Masculino , Memória/fisiologia , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso , Plasticidade Neuronal/genética , Fenótipo , Fatores de Risco , Transtornos de Estresse Pós-Traumáticos/complicações , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/genética
17.
J Chem Inf Model ; 61(2): 1010-1019, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33449688

RESUMO

Thyroid hormone receptors (TRs) play a critical role in human development, growth, and metabolism. Antagonists of TRs offer an attractive strategy to treat hyperthyroidism without the disadvantage of a delayed onset of drug action. While it is challenging to examine the atomistic behavior of TRs in a laboratory setting, computational methods such as molecular dynamics (MD) simulations have proven their value to elucidate ligand-induced conformational changes in nuclear receptors. Here, we performed MD simulations of TRα and TRß complexed to their native ligand triiodothyronine (T3) as well as several antagonists. Based on the examination of 27 µs MD trajectories, we showed how binding of these compounds influences various structural features of the receptors including the helicity of helices 3 and 10 as well as the location of helix-12. Helices 3 and 12 are known to mediate coactivator association required for downstream signaling, suggesting these changes to be the molecular basis for TR antagonism. A mechanistic analysis of the trajectories revealed an allosteric pathway between H3 and H12 to be responsible for the conformational adaptations. Even though a mechanistic understanding of conformational adaptations triggered by TR antagonists is important for the development of novel therapeutics, they have not been previously examined in detail as it was done here.


Assuntos
Receptores dos Hormônios Tireóideos , Glândula Tireoide , Humanos , Ligantes , Receptores beta dos Hormônios Tireóideos , Tri-Iodotironina
18.
J Chem Inf Model ; 61(2): 1001-1009, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33523669

RESUMO

The ligand-binding domain of the androgen receptor (AR) is a target for drugs against prostate cancer and offers three distinct binding sites for small molecules. Drugs acting on the orthosteric hormone binding site suffer from resistance mechanisms that can, in the worst case, reverse their therapeutic effect. While many allosteric ligands targeting either the activation function-2 (AF-2) or the binding function-3 (BF-3) have been reported, their potential for simultaneous administration with currently prescribed antiandrogens was disregarded. Here, we report results of 60 µs molecular dynamics simulations to investigate combinations of orthosteric and allosteric AR antagonists. Our results suggest BF-3 inhibitors to be more suitable in combination with classical antiandrogens as opposed to AF-2 inhibitors based on binding free energies and binding modes. As a mechanistic explanation for these observations, we deduced a structural adaptation of helix-12 involved in the formation of the AF-2 site by classical AR antagonists. Additionally, the changes were accompanied by an expansion of the orthosteric binding site. Considering our predictions, the selective combination of AR-targeting compounds may improve the treatment of prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos , Receptores Androgênicos , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos/farmacologia , Sítios de Ligação , Humanos , Ligantes , Masculino , Simulação de Dinâmica Molecular
19.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948012

RESUMO

Cytochrome P450 enzymes (CYPs) are the largest group of enzymes involved in human drug metabolism. Ligand tunnels connect their active site buried at the core of the membrane-anchored protein to the surrounding solvent environment. Recently, evidence of a superficial allosteric site, here denoted as hotspot 1 (H1), involved in the regulation of ligand access in a soluble prokaryotic CYP emerged. Here, we applied multi-scale computational modeling techniques to study the conservation and functionality of this allosteric site in the nine most relevant mammalian CYPs responsible for approximately 70% of drug metabolism. In total, we systematically analyzed over 44 µs of trajectories from conventional MD, cosolvent MD, and metadynamics simulations. Our bioinformatic analysis and simulations with organic probe molecules revealed the site to be well conserved in the CYP2 family with the exception of CYP2E1. In the presence of a ligand bound to the H1 site, we could observe an enlargement of a ligand tunnel in several members of the CYP2 family. Further, we could detect the facilitation of ligand translocation by H1 interactions with statistical significance in CYP2C8 and CYP2D6, even though all other enzymes except for CYP2C19, CYP2E1, and CYP3A4 presented a similar trend. As the detailed comprehension of ligand access and egress phenomena remains one of the most relevant challenges in the field, this work contributes to its elucidation and ultimately helps in estimating the selectivity of metabolic transformations using computational techniques.


Assuntos
Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Mamíferos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Sítio Alostérico , Animais , Cânfora 5-Mono-Oxigenase/química , Cânfora 5-Mono-Oxigenase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP2C8/química , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química
20.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498551

RESUMO

Oxidative reactions catalyzed by Cytochrome P450 enzymes (CYPs), which constitute the most relevant group of drug-metabolizing enzymes, are enabled by their redox partner Cytochrome P450 reductase (CPR). Both proteins are anchored to the membrane of the endoplasmic reticulum and the CPR undergoes a conformational change in order to interact with the respective CYP and transfer electrons. Here, we conducted over 22 microseconds of molecular dynamics (MD) simulations in combination with protein-protein docking to investigate the conformational changes necessary for the formation of the CPR-CYP complex. While some structural features of the CPR and the CPR-CYP2D6 complex that we highlighted confirmed previous observations, our simulations revealed additional mechanisms for the conformational transition of the CPR. Unbiased simulations exposed a movement of the whole protein relative to the  membrane, potentially to facilitate interactions with its diverse set of redox partners. Further, we present a structural mechanism for the susceptibility of the CPR to different redox states based on the flip of a glycine residue disrupting the local interaction network that maintains inter-domain proximity. Simulations of the CPR-CYP2D6 complex pointed toward an additional interaction surface of the FAD domain and the proximal side of CYP2D6. Altogether, this study provides novel structural insight into the mechanism of CPR-CYP interactions and underlying conformational changes, improving our understanding of this complex machinery Cytochrome P450 reductase; CPR; conformational; dynamicsrelevant for drug metabolism.


Assuntos
Simulação de Dinâmica Molecular , NADPH-Ferri-Hemoproteína Redutase/química , Sítios de Ligação , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Simulação de Acoplamento Molecular , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Ligação Proteica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA