Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(26): 13006-13015, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189595

RESUMO

Abdominal aortic aneurysm (AAA) remains the second most frequent vascular disease with high mortality but has no approved medical therapy. We investigated the direct role of apelin (APLN) in AAA and identified a unique approach to enhance APLN action as a therapeutic intervention for this disease. Loss of APLN potentiated angiotensin II (Ang II)-induced AAA formation, aortic rupture, and reduced survival. Formation of AAA was driven by increased smooth muscle cell (SMC) apoptosis and oxidative stress in Apln-/y aorta and in APLN-deficient cultured murine and human aortic SMCs. Ang II-induced myogenic response and hypertension were greater in Apln-/y mice, however, an equivalent hypertension induced by phenylephrine, an α-adrenergic agonist, did not cause AAA or rupture in Apln-/y mice. We further identified Ang converting enzyme 2 (ACE2), the major negative regulator of the renin-Ang system (RAS), as an important target of APLN action in the vasculature. Using a combination of genetic, pharmacological, and modeling approaches, we identified neutral endopeptidase (NEP) that is up-regulated in human AAA tissue as a major enzyme that metabolizes and inactivates APLN-17 peptide. We designed and synthesized a potent APLN-17 analog, APLN-NMeLeu9-A2, that is resistant to NEP cleavage. This stable APLN analog ameliorated Ang II-mediated adverse aortic remodeling and AAA formation in an established model of AAA, high-fat diet (HFD) in Ldlr-/- mice. Our findings define a critical role of APLN in AAA formation through induction of ACE2 and protection of vascular SMCs, whereas stable APLN analogs provide an effective therapy for vascular diseases.


Assuntos
Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/patologia , Apelina/metabolismo , Neprilisina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Angiotensina II/administração & dosagem , Enzima de Conversão de Angiotensina 2 , Animais , Aorta Abdominal/citologia , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/etiologia , Apelina/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacologia , Fármacos Cardiovasculares/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Miócitos de Músculo Liso , Neprilisina/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Peptidil Dipeptidase A/metabolismo , Fenilefrina/administração & dosagem , Cultura Primária de Células , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/genética
2.
Plant Physiol ; 181(3): 945-960, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31534022

RESUMO

Adaptive evolution of enzymes benefits from catalytic promiscuity. Sesquiterpene lactones (STLs) have diverged extensively in the Asteraceae, and studies of the enzymes for two representative STLs, costunolide and artemisinin, could provide an insight into the adaptive evolution of enzymes. Costunolide appeared early in Asteraceae evolution and is widespread, whereas artemisinin is a unique STL appearing in a single Asteraceae species, Artemisia annua Therefore, costunolide is a ubiquitous STL, while artemisinin is a specialized one. In costunolide biosynthesis, germacrene A oxidase (GAO) synthesizes germacrene A acid from germacrene A. Similarly, in artemisinin biosynthesis, amorphadiene oxidase (AMO) synthesizes artemisinic acid from amorphadiene. GAO promiscuity is suggested to drive the diversification of STLs. To examine the degree of GAO promiscuity, we expressed six sesquiterpene synthases from cotton (Gossypium arboretum), goldenrod (Solidago canadensis), valerian (Valeriana officinalis), agarwood (Aquilaria crassna), tobacco (Nicotiana tabacum), and orange (Citrus sinensis) in yeast to produce seven distinct sesquiterpene substrates (germacrene D, 5-epi-aristolochene, valencene, δ-cadinene, α- and δ-guaienes, and valerenadiene). GAO or AMO was coexpressed in these yeasts to evaluate the promiscuities of GAO and AMO. Remarkably, all sesquiterpenes tested were oxidized to sesquiterpene acids by GAO, but negligible activities were found from AMO. Hence, GAO apparently has catalytic potential to evolve into different enzymes for synthesizing distinct STLs, while the recently specialized AMO demonstrates rigid substrate specificity. Mutant GAOs implanted with active site residues of AMO showed substantially reduced stability, but their per enzyme activities to produce artemisinic acid increased by 9-fold. Collectively, these results suggest promiscuous GAOs can be developed as novel catalysts for synthesizing unique sesquiterpene derivatives.


Assuntos
Asteraceae/enzimologia , Lactonas/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos de Germacrano/metabolismo , Sesquiterpenos/metabolismo , Artemisininas/química , Artemisininas/metabolismo , Asteraceae/genética , Asteraceae/metabolismo , Catálise , Evolução Molecular , Lactonas/química , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Sesquiterpenos/química , Sesquiterpenos de Germacrano/química , Especificidade por Substrato
3.
Nat Prod Rep ; 36(12): 1687-1705, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30994146

RESUMO

Covering: up to March 2019 Amino acid racemases and epimerases are key enzymes that invert the configuration of common amino acids and supply many corresponding d-isomers in living organisms. Some d-amino acids are inherently bioactive, whereas others are building blocks for important biomolecules, for example lipid II, the bacterial cell wall precursor. Peptides containing them have enhanced proteolytic stability and can act as important recognition elements in mammalian systems. Selective inhibition of certain amino acid racemases (e.g. glutamate racemase) is believed to offer a promising target for new antibacterial drugs effective against pathogens resistant to current antibiotics. Many amino acid racemases employ imine formation with pyridoxal phosphate (PLP) as a cofactor to accelerate the abstraction of the alpha proton. However, the group reviewed herein achieves racemization of free amino acids without the use of cofactors or metals, and uses a thiol/thiolate pair for deprotonation and reprotonation. All bacteria and higher plants contain such enzymes, for example diaminopimelate epimerase, which is required for lysine biosynthesis in these organisms. This process cannot be accomplished without an enzyme catalyst as the acidities of a thiol and the substrate α-hydrogen are inherently mismatched by at least 10 orders of magnitude. This review describes the structural and mechanistic studies on PLP-independent racemases and the evolving view of key enzymatic machinery that accomplishes these remarkable transformations.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfato de Piridoxal/metabolismo , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Isomerases de Aminoácido/antagonistas & inibidores , Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Inibidores Enzimáticos/química , Conformação Proteica , Racemases e Epimerases/antagonistas & inibidores , Compostos de Sulfidrila/metabolismo
4.
Org Biomol Chem ; 16(7): 1126-1133, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29362754

RESUMO

O-Ureidoserine racemase (DcsC) is a PLP-independent enzyme in the biosynthetic route to the antibiotic d-cycloserine. Here we present the recombinant expression and characterization of a significantly more active DcsC variant featuring an N-terminal SUMO-tag. Synthesis of enantiomeric pure inhibitors in combination with site-specific mutation of active site cysteines to serines of this enzyme offers closer insights into the mechanism of this transformation. Homology modelling with a close relative (diaminopimelate epimerase, DapF) inspired C- and N-terminal truncation of DcsC to produce a more compact yet still active enzyme variant.

5.
Chembiochem ; 17(16): 1495-8, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27377680

RESUMO

The apelinergic system is a mammalian peptide hormone network with key physiological roles. Apelin isoforms and analogues are believed to be promising therapeutics for cardiovascular disease. Despite extensive studies on apelin-13 degradation patterns, only one protease, angiotensin-converting enzyme 2 (ACE2), had been implicated in its physiological regulation. Through use of a peptide-based fluorescent probe, we identified the metalloprotease neprilysin (NEP, a target for Entresto used in treatment of heart failure) as an enzyme that cleaves apelin isoforms. In vitro NEP proteolysis generated fragments that lacked the ability to bind to the apelin receptor, thereby making NEP the first protease to fully inactivate apelin. The involvement of NEP in the apelinergic system contributes to the understanding of its role in cardiovascular physiology.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neprilisina/metabolismo , Corantes Fluorescentes/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Conformação Molecular , Neprilisina/química
6.
JACS Au ; 4(8): 3217-3227, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39211604

RESUMO

Ibuzatrelvir (1) was recently disclosed and patented by Pfizer for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has received fast-track status from the USA Food and Drug Administration (FDA) and has entered phase III clinical trials as a possible replacement for Paxlovid. Like nirmatrelvir (2) in Paxlovid, this orally active drug candidate is designed to target viral main proteases (Mpro) through reversible covalent interaction of its nitrile warhead with the active site thiol of the chymotrypsin-like cysteine protease (3CL protease). Inhibition of Mpro hinders the processing of the proteins essential for viral replication in vivo. However, ibuzatrelvir apparently does not require ritonavir (3), which is coadministered in Paxlovid to block human oxidative metabolism of nirmatrelvir. Here, we report the crystal structure of the complex of ibuzatrelvir with the active site of SARS-CoV-2 Mpro at 2.0 Šresolution. In addition, we show that ibuzatrelvir also potently inhibits the Mpro of Middle East respiratory syndrome-related coronavirus (MERS-CoV), which is fortunately not widespread but can be dangerously lethal (∼36% mortality). Co-crystal structures show that the binding mode of the drug to both active sites is similar and that the trifluoromethyl group of the inhibitor fits precisely into a critical S2 substrate binding pocket of the main proteases. However, our results also provide a rationale for the differences in potency of ibuzatrelvir for these two proteases due to minor differences in the substrate preferences leading to a weaker H-bond network in MERS-CoV Mpro. In addition, we examined the reversibility of compound binding to both proteases, which is an important parameter in reducing off-target effects as well as the potential immunogenicity. The crystal structures of the ibuzatrelvir complexes with Mpro of SARS-CoV-2 and of MERS-CoV will further assist drug design for coronaviral infections in humans and animals.

7.
Front Chem ; 10: 852210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281564

RESUMO

Coronaviruses infect a variety of hosts in the animal kingdom, and while each virus is taxonomically different, they all infect their host via the same mechanism. The coronavirus main protease (Mpro, also called 3CLpro), is an attractive target for drug development due to its essential role in mediating viral replication and transcription. An Mpro inhibitor, GC376, has been shown to treat feline infectious peritonitis (FIP), a fatal infection in cats caused by internal mutations in the feline enteric coronavirus (FECV). Recently, our lab demonstrated that the feline drug, GC373, and prodrug, GC376, are potent inhibitors of SARS-CoV-2 Mpro and solved the structures in complex with the drugs; however, no crystal structures of the FIP virus (FIPV) Mpro with the feline drugs have been published so far. Here, we present crystal structures of FIPV Mpro-GC373/GC376 complexes, revealing the inhibitors covalently bound to Cys144 in the active site, similar to SARS-CoV-2 Mpro. Additionally, GC376 has a higher affinity for FIPV Mpro with lower nanomolar Ki values compared to SARS-CoV and SARS-CoV-2 Mpro. We also show that improved derivatives of GC376 have higher potency for FIPV Mpro. Since GC373 and GC376 represent strong starting points for structure-guided drug design, determining the crystal structures of FIPV Mpro with these inhibitors are important steps in drug optimization and structure-based broad-spectrum antiviral drug discovery.

8.
J Med Chem ; 65(4): 2905-2925, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34242027

RESUMO

Recurring coronavirus outbreaks, such as the current COVID-19 pandemic, establish a necessity to develop direct-acting antivirals that can be readily administered and are active against a broad spectrum of coronaviruses. Described in this Article are novel α-acyloxymethylketone warhead peptidomimetic compounds with a six-membered lactam glutamine mimic in P1. Compounds with potent SARS-CoV-2 3CL protease and in vitro viral replication inhibition were identified with low cytotoxicity and good plasma and glutathione stability. Compounds 15e, 15h, and 15l displayed selectivity for SARS-CoV-2 3CL protease over CatB and CatS and superior in vitro SARS-CoV-2 antiviral replication inhibition compared with the reported peptidomimetic inhibitors with other warheads. The cocrystallization of 15l with SARS-CoV-2 3CL protease confirmed the formation of a covalent adduct. α-Acyloxymethylketone compounds also exhibited antiviral activity against an alphacoronavirus and non-SARS betacoronavirus strains with similar potency and a better selectivity index than remdesivir. These findings demonstrate the potential of the substituted heteroaromatic and aliphatic α-acyloxymethylketone warheads as coronavirus inhibitors, and the described results provide a basis for further optimization.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Peptidomiméticos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , COVID-19/metabolismo , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Glutamina/química , Glutamina/farmacologia , Humanos , Cetonas/química , Cetonas/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/química , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
9.
Org Biomol Chem ; 9(11): 4347-52, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21505703

RESUMO

The bridge-substituted calix[4]arene carboxylic acid, 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetramethoxy-calix[4]arene-2-carboxylic acid (1), can be readily converted to various esters 2-4 and reduced to the alcohol 5, which reacts with methyl iodide to give the ether 6. The alcohol can be dansylated to give 7, the fluorescence of which is selectively quenched by Cu(II) in acetonitrile. An attempt to convert the acid 1 to an amide resulted unexpectedly in the formation of a lactone 8. The conformational characteristics of 1-8 have been studied in solution and, in the cases of 2 and 4, in the solid state by determination of their single-crystal X-ray structures. With the exception of 8, in all these compounds the bridge substituent adopts an equatorial (lateral) orientation.


Assuntos
Calixarenos/química , Calixarenos/síntese química , Fenóis/química , Fenóis/síntese química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
10.
Beilstein J Org Chem ; 7: 1602-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22238537

RESUMO

Lithiation and subsequent reaction with CO(2) was applied to calix[4]arenes with different, equal or mixed, ether functions at the lower-rim site as well as tert-butylated or non-tert-butylated upper-rim positions. Whereas this reaction fails for symmetric calix[4]arene ethers with alkoxy residues greater than methoxy, the carboxylation of mixed methoxy-propoxy calixarene ethers is possible. In connection with this, several new monobridge-substituted calix[4]arenes were characterized with respect to their conformational behaviour in solution and the X-ray crystal structure of one key intermediate is taken into consideration.

11.
RSC Med Chem ; 12(8): 1402-1413, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34458742

RESUMO

High blood pressure and consequential cardiovascular diseases are among the top causes of death worldwide. The apelinergic (APJ) system has emerged as a promising target for the treatment of cardiovascular issues, especially prevention of ischemia reperfusion (IR) injury after a heart attack or stroke. However, rapid degradation of the endogenous apelin peptides in vivo limits their use as therapeutic agents. Here, we study the effects of simple homologue substitutions, i.e. incorporation of non-canonical amino acids l-cyclohexylalanine (l-Cha) and l-homoarginine (l-hArg), on the proteolytic stability of pyr-1-apelin-13 and apelin-17 analogues. The modified 13-mers display up to 40 times longer plasma half-life than native apelin-13 and in preliminary in vivo assay show moderate blood pressure-lowering effects. The corresponding apelin-17 analogues show pronounced blood pressure-lowering effects and up to a 340-fold increase in plasma half-life compared to the native apelin-17 isoforms, suggesting their potential use in the design of metabolically stable apelin analogues to prevent IR injury.

12.
J Mol Biol ; 433(13): 167003, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33895266

RESUMO

The main protease (Mpro, also known as 3CL protease) of SARS-CoV-2 is a high priority drug target in the development of antivirals to combat COVID-19 infections. A feline coronavirus antiviral drug, GC376, has been shown to be effective in inhibiting the SARS-CoV-2 main protease and live virus growth. As this drug moves into clinical trials, further characterization of GC376 with the main protease of coronaviruses is required to gain insight into the drug's properties, such as reversibility and broad specificity. Reversibility is an important factor for therapeutic proteolytic inhibitors to prevent toxicity due to off-target effects. Here we demonstrate that GC376 has nanomolar Ki values with the Mpro from both SARS-CoV-2 and SARS-CoV strains. Restoring enzymatic activity after inhibition by GC376 demonstrates reversible binding with both proteases. In addition, the stability and thermodynamic parameters of both proteases were studied to shed light on physical chemical properties of these viral enzymes, revealing higher stability for SARS-CoV-2 Mpro. The comparison of a new X-ray crystal structure of Mpro from SARS-CoV complexed with GC376 reveals similar molecular mechanism of inhibition compared to SARS-CoV-2 Mpro, and gives insight into the broad specificity properties of this drug. In both structures, we observe domain swapping of the N-termini in the dimer of the Mpro, which facilitates coordination of the drug's P1 position. These results validate that GC376 is a drug with an off-rate suitable for clinical trials.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Pirrolidinas/química , Pirrolidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacologia , Gatos , Proteases 3C de Coronavírus/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Ácidos Sulfônicos , Termodinâmica , Proteínas não Estruturais Virais/química , Tratamento Farmacológico da COVID-19
13.
Eur J Med Chem ; 222: 113584, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118724

RESUMO

Replication of SARS-CoV-2, the coronavirus causing COVID-19, requires a main protease (Mpro) to cleave viral proteins. Consequently, Mpro is a target for antiviral agents. We and others previously demonstrated that GC376, a bisulfite prodrug with efficacy as an anti-coronaviral agent in animals, is an effective inhibitor of Mpro in SARS-CoV-2. Here, we report structure-activity studies of improved GC376 derivatives with nanomolar affinities and therapeutic indices >200. Crystallographic structures of inhibitor-Mpro complexes reveal that an alternative binding pocket in Mpro, S4, accommodates the P3 position. Alternative binding is induced by polar P3 groups or a nearby methyl. NMR and solubility studies with GC376 show that it exists as a mixture of stereoisomers and forms colloids in aqueous media at higher concentrations, a property not previously reported. Replacement of its Na+ counter ion with choline greatly increases solubility. The physical, biochemical, crystallographic, and cellular data reveal new avenues for Mpro inhibitor design.


Assuntos
Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Pirrolidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Ácidos Sulfônicos/farmacologia , Animais , Antivirais/síntese química , Antivirais/metabolismo , Sítios de Ligação , Chlorocebus aethiops , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Humanos , Micelas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ligação Proteica , Pirrolidinas/síntese química , Pirrolidinas/metabolismo , SARS-CoV-2/enzimologia , Solubilidade , Relação Estrutura-Atividade , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/metabolismo , Células Vero
14.
Expert Opin Ther Pat ; 30(4): 251-261, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32066307

RESUMO

Introduction: The apelinergic system is regarded as a novel therapeutic target for cardiovascular health, fluid homeostasis, the hypothalamic-pituitary-adrenal (HPA) axis as well as carbohydrate and fat metabolism. Two endogenous peptide ligands, namely apelin and elabela, have been demonstrated to moderate its various metabolic and neurological functions. Both bind with high (sub)-nanomolar affinity to APJR but get degraded rapidly in circulation. In addition, various diseases have been associated with the depletion of these regulatory peptides. Besides blocking the degrading proteases, a common strategy in targeting drugs to APJR is the development of metabolically stable peptide analogs or small molecule modulators. Supporting this trend, patent literature has evolved from 121 patents in 2014 to a total of almost 1000 patents today.Areas covered: This review includes WIPO-listed small molecule and peptide-based agonists, antagonists and allosteric modulators of APJR published between 2014 and 2019.Expert opinion: Both apelin peptide analogues and small molecule modulators are emerging, only recently including one example of an elabela-based analogue. Patent activity is predominantly on agonistic modulators since they show higher affinity and fewer off-target effects. Although several low nanomolar binders with half-lives exceeding 24 h have been confirmed in animal models, clinical validation of these drug-targets is sparse.


Assuntos
Receptores de Apelina/antagonistas & inibidores , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Humanos , Patentes como Assunto , Bibliotecas de Moléculas Pequenas
15.
Cardiol J ; 27(2): 184-193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30155860

RESUMO

Pulmonary hypertension (PH) is a rare and devastating disease characterized by progressive increases in pulmonary arterial pressure and pulmonary vascular resistance, which eventually leads to right ventric-ular failure and death. Pulmonary arterial hypertension (PAH) (World Health Organization Group I), a subset of PH, and may be idiopathic in nature or associated with other systemic conditions and is thought to most commonly effect women, the majority of whom are of childbearing age. However, PAH in the elderly population is being increasingly diagnosed creating clinical considerations that had once not been considered. Often in an elderly population the diagnosis of PAH may be delayed due to chronic comorbid conditions such as coronary artery disease or other dyspneic conditions. Though survival and clinical outcomes have improved, the elderly population continues to have disproportionately lower survival rates. High clinical suspicion of PAH warrants a complete diagnostic workup with right heart catheterization. Upon diagnosis, PAH specific therapy should be initiated with possible drug interactions in mind. Adjuvant pulmonary rehabilitation should be considered as a conservative measure with definitive results. Finally, psychosomatic aspects of the disease should also be considered in elderly populations.


Assuntos
Anti-Hipertensivos/uso terapêutico , Pressão Arterial/efeitos dos fármacos , Tratamento Conservador , Hipertensão Arterial Pulmonar/terapia , Artéria Pulmonar/efeitos dos fármacos , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/efeitos adversos , Comorbidade , Tratamento Conservador/efeitos adversos , Tratamento Conservador/mortalidade , Interações Medicamentosas , Feminino , Humanos , Masculino , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/mortalidade , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Medição de Risco , Fatores de Risco , Resultado do Tratamento
16.
J Med Chem ; 63(20): 12073-12082, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33001648

RESUMO

Apelin is an important contributor to the renin-angiotensin axis, regulating cardiovascular, metabolic, and neurological functions. Apelin-17 has especially potent cardio-physiological effects but is rapidly degraded in human blood (t0.5 ∼ 4 min). Angiotensin-converting enzyme 2 (ACE-2), neprilysin (NEP), and plasma kallikrein (KLKB1) cleave and inactivate it, with the latter cutting within the arginine-arginine site. Here, we show that analogues with an N-terminal polyethylene glycol (PEG) extension as well as peptide bond isosteres resist KLKB1 cleavage but that only the PEG-extended analogues significantly improve physiologically activity. The PEGylated analogues feature comparatively high log D7.4 values and high plasma protein binding, adding to their stability. An alanine scan of apelin-17 reveals that the integrity and conformational flexibility of the KFRR motif are necessary for cardio-physiological activity. An optimized Cbz-PEG6 analogue is presented that is stable in blood (t0.5 ∼ 18 h), has significant blood-pressure lowering effect, and shows fast recovery of heart function in Langendorff assay.


Assuntos
Apelina/química , Polietilenoglicóis/química , Substâncias Protetoras/química , Apelina/análogos & derivados , Humanos , Conformação Molecular , Estereoisomerismo
17.
J Clin Invest ; 130(1): 94-107, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738185

RESUMO

Sustained, indolent immune injury of the vasculature of a heart transplant limits long-term graft and recipient survival. This injury is mitigated by a poorly characterized, maladaptive repair response. Vascular endothelial cells respond to proangiogenic cues in the embryo by differentiation to specialized phenotypes, associated with expression of apelin. In the adult, the role of developmental proangiogenic cues in repair of the established vasculature is largely unknown. We found that human and minor histocompatibility-mismatched donor mouse heart allografts with alloimmune-mediated vasculopathy upregulated expression of apelin in arteries and myocardial microvessels. In vivo, loss of donor heart expression of apelin facilitated graft immune cell infiltration, blunted vascular repair, and worsened occlusive vasculopathy in mice. In vitro, an apelin receptor agonist analog elicited endothelial nitric oxide synthase activation to promote endothelial monolayer wound repair and reduce immune cell adhesion. Thus, apelin acted as an autocrine growth cue to sustain vascular repair and mitigate the effects of immune injury. Treatment with an apelin receptor agonist after vasculopathy was established markedly reduced progression of arterial occlusion in mice. Together, these initial data identify proangiogenic apelin as a key mediator of coronary vascular repair and a pharmacotherapeutic target for immune-mediated injury of the coronary vasculature.


Assuntos
Apelina/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Células Endoteliais/fisiologia , Transplante de Coração/efeitos adversos , Animais , Receptores de Apelina/agonistas , Receptores de Apelina/fisiologia , Diferenciação Celular , Células Endoteliais/citologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia
18.
Nat Commun ; 11(1): 4282, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855413

RESUMO

The main protease, Mpro (or 3CLpro) in SARS-CoV-2 is a viable drug target because of its essential role in the cleavage of the virus polypeptide. Feline infectious peritonitis, a fatal coronavirus infection in cats, was successfully treated previously with a prodrug GC376, a dipeptide-based protease inhibitor. Here, we show the prodrug and its parent GC373, are effective inhibitors of the Mpro from both SARS-CoV and SARS-CoV-2 with IC50 values in the nanomolar range. Crystal structures of SARS-CoV-2 Mpro with these inhibitors have a covalent modification of the nucleophilic Cys145. NMR analysis reveals that inhibition proceeds via reversible formation of a hemithioacetal. GC373 and GC376 are potent inhibitors of SARS-CoV-2 replication in cell culture. They are strong drug candidates for the treatment of human coronavirus infections because they have already been successful in animals. The work here lays the framework for their use in human trials for the treatment of COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Coronavirus Felino/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Células A549 , Animais , Antivirais/química , Betacoronavirus/enzimologia , Sítios de Ligação , Chlorocebus aethiops , Proteases 3C de Coronavírus , Coronavirus Felino/enzimologia , Cristalografia por Raios X , Cisteína Endopeptidases/química , Efeito Citopatogênico Viral/efeitos dos fármacos , Reposicionamento de Medicamentos , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Pró-Fármacos , Inibidores de Proteases/química , Pirrolidinas/química , Pirrolidinas/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2 , Ácidos Sulfônicos , Células Vero , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos
20.
Org Biomol Chem ; 7(23): 4904-17, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19907781

RESUMO

A series of new fluorescent calix[4]arenes (2-7; 5 has been isolated as two not yet described conformational isomers) featuring two directly lower rim attached dansyl moieties besides other lower or upper rim site substituents have been synthesized and investigated with reference to their fluorescence properties including potential sensing capability for metal ions. Except for the nitro substituted compound 7, which showed a moderate fluorescence quenching on the addition of Hg2+ in acetonitrile, the calixarenes 2-6 were found to selectively recognize Cu2+ in the 10(-6) mol L(-1) concentration range detectable by the nearly total quenching of their intrinsic fluorescence. Using fluorescence titration experiments, the ideal complexation ratio [metal ion]/[ligand] for three exemplarily investigated calixarenes (3, 5a and 7) was determined to be 2:1. For 5a, a new red shifted signal was observed by the complexation of Cu2+ while the addition of Hg2+ only yields a moderate quenching of the parent signal, indicating a different binding mode for both metal ions. This finding enables the calixarene 5a to be used as a suitable chemosensor for the simultaneous determination of copper and mercury. In this paper we also present the first crystal structures of dansylated calixarenes having the dansyl groups directly attached to the lower rim site. They involve the unsolvated calixarene 5b and the two solvent inclusion compounds 2.CH2(OH)CN and 3.3CH3CN, each showing an extensive pattern of non-covalent interactions. In both solvates, the calixarenes are fixed in a cone conformation while the unsolvated calixarene 5b adopts the partial cone conformation. A solution 1H NMR study in CDCl3 reveals also the cone conformation for all dansylated calixarenes, except the more conformationally flexible upper rim unsubstituted calixarene 5 which showed cone and partial cone conformers 5a and 5b, respectively, in an approximate 2:3 ratio.


Assuntos
Calixarenos/química , Calixarenos/síntese química , Fluorescência , Fenóis/química , Fenóis/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA