Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(11): 4970-4974, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32115942

RESUMO

Photoactivation of bioactive molecules allows manipulation of cellular processes with high spatiotemporal precision. The recent emergence of visible-light excitable photoprotecting groups has the potential to further expand the established utility of the photoactivation strategy in biological applications by offering higher tissue penetration, diminished phototoxicity, and compatibility with other light-dependent techniques. Nevertheless, a critical barrier to such applications remains the significant hydrophobicity of most visible-light excitable photocaging groups. Here, we find that applying the conventional 2,6-sulfonation to meso-methyl BODIPY photocages is incompatible with their photoreaction due to an increase in the excited state barrier for photorelease. We present a simple, remote sulfonation solution to BODIPY photocages that imparts water solubility and provides control over cellular permeability while retaining their favorable spectroscopic and photoreaction properties. Peripherally disulfonated BODIPY photocages are cell impermeable, making them useful for modulation of cell-surface receptors, while monosulfonated BODIPY retains the ability to cross the cellular membrane and can modulate intracellular targets. This new approach is generalizable for controlling BODIPY localization and was validated by sensitization of mammalian cells and neurons by visible-light photoactivation of signaling molecules.


Assuntos
Alcanossulfonatos/metabolismo , Compostos de Boro/metabolismo , Corantes Fluorescentes/metabolismo , Alcanossulfonatos/síntese química , Alcanossulfonatos/efeitos da radiação , Animais , Compostos de Boro/síntese química , Compostos de Boro/efeitos da radiação , Membrana Celular/metabolismo , Dopamina/química , Dopamina/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/efeitos da radiação , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Células HEK293 , Hipocampo/efeitos dos fármacos , Histamina/química , Histamina/farmacologia , Humanos , Luz , Microscopia Confocal , Microscopia de Fluorescência , Estrutura Molecular , Neurônios/efeitos dos fármacos , Ratos , Solubilidade
2.
J Org Chem ; 85(8): 5712-5717, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32216269

RESUMO

BODIPY photocages allow the release of substrates using visible light irradiation. They have the drawback of requiring reasonably good leaving groups for photorelease. Photorelease of alcohols is often accomplished by attachment with carbonate linkages, which upon photorelease liberate CO2 and generate the alcohol. Here, we show that boron-alkylated BODIPY photocages are capable of directly photoreleasing both aliphatic alcohols and phenols upon irradiation via photocleavage of ether linkages. Direct photorelease of a hydroxycoumarin dye was demonstrated in living HeLa cells.


Assuntos
Álcoois , Boro , Compostos de Boro , Células HeLa , Humanos
3.
J Am Chem Soc ; 140(43): 14308-14313, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30277768

RESUMO

Stable organic radicals with switchable spin states have attracted attention for a variety of applications, but a fundamental understanding of how radical structure effects the weak bonding interactions between organic radicals is limited. To evaluate the effect of chemical structure on the strength and nature of such spin interactions, a series of 14 tethered aryl dicyanomethyl diradicals were synthesized, and the structure and thermodynamic properties of the diradicals were investigated. These studies indicate that the nature of the dimer and the equilibrium thermodynamic parameters of the diradical-dimer equilibria are highly sensitive to the attachment point of the linker, the length of the linker, and the substituents on the radical itself. Values of the intramolecular Ka vary from as small as 5 to as high as 105 depending on these variables. An X-ray crystal structure for a linked ortho-substituted diradical shows that the diradical forms an intramolecular sigma dimer in the crystalline state with an elongated C-C bond (1.637 Å). Subtle changes to the radical structure influences the nature of the spin interactions, as fixing the dimethylamino substituent on the radical into a ring to make a julolidine-derived diradical leads to the weakest bonding interaction observed (Δ Gbonding = 1 kcal mol-1) and changes the spin-paired species from a sigma dimer to a diradical pimer. This work has implications for the design of stimuli-responsive materials that can reversibly switch between the dramatically different properties of closed-shell species and the unique properties of diradicals.

4.
J Org Chem ; 82(24): 13550-13556, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29087717

RESUMO

Nitrenium and oxenium ions are important reactive intermediates in synthetic and biological processes, and their ground electronic configurations are of great interest due to having distinct reactivities and properties. In general, the closed-shell singlet state of these intermediates usually react as electrophiles, while reactions of the triplet states of these ions react like typical diradicals (e.g., H atom abstractions). Nonsubstituted phenyl nitrenium ions (Ph-NH+) and phenyl oxenium ions (Ph-O+) have closed-shell singlet ground states with large singlet-triplet gaps resulting from a strong break in the degeneracy of the p orbitals on the formal nitrenium/oxenium center. Remarkably, we find computationally (CBS-QB3 and G4MP2) that azulenyl nitrenium and oxenium ions can have triplet ground states depending upon the attachment position on the azulene core. For instance, CBS-QB3 predicts that 1-azulenyl nitrenium ion and 1-azulenyl oxenium ion are singlet ground-state species with considerable singlet-triplet gaps of -47 and -45 kcal/mol to the lowest-energy triplet state, respectively. In contrast, 6-azulenyl nitrenium ion and 6-azulenyl oxenium ion have triplet ground states with a singlet-triplet gap of +7 and +10 kcal/mol, respectively. Moreover, the triplet states are π,π* states, rather than the typical n,π* states seen for many aryl nitrenium or oxenium ions. This dramatic switch in favored electronic states can be ascribed to changes in ring aromaticity/antiaromaticity, with the switch from ground-state singlet ions to triplet-favored ions resulting from both a destabilized singlet state (Hückel antiaromatic) and a stabilized triplet (Baird aromatic) state. Density functional theory (UB3LYP/6-31+G(d,p)) was used to determine substituent effects on the singlet-triplet energy gap for azulenyl nitrenium and oxenium ions, and we find that the unusual ground triplet states can be further tuned by employing electron-donating or -withdrawing groups on the azulene ring. This work demonstrates that azulenyl nitrenium and oxenium ions can have triplet π,π* ground states and provides a simple recipe for making ionic intermediates with distinct electronic configurations and consequent prediction of unique reactivity and magnetic properties from these species.

5.
ACS Chem Biol ; 14(12): 2833-2840, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31750642

RESUMO

Acquired resistance to apoptotic agents is a long-standing challenge in cancer treatment. Cathepsin B (CTSB) is an enzyme which, among many essential functions, promotes apoptosis during cellular stress through regulation of intracellular proteolytic networks on the minute time scale. Recent data indicate that CTSB inhibition may be a promising method to steer cells away from apoptotic death toward necrosis, a mechanism of cell death that can overcome resistance to apoptotic agents, stimulate an immune response and promote antitumor immunity. Unfortunately, rapid and selective intracellular inactivation of CTSB has not been possible. However, here we report on the synthesis and characterization of photochemical and biological properties of BODIPY-caged inhibitors of CTSB that are cell permeable, highly selective and activated rapidly upon exposure to visible light. Intriguingly, these compounds display tunable photophysical and biological properties based on substituents bound directly to boron. Me2BODIPY-caged compound 8 displays the dual-action capability of light-accelerated CTSB inhibition and singlet oxygen production from a singular molecular entity. The dual-action capacity of 8 leads to a rapid necrotic response in MDA-MB-231 triple negative breast cancer cells with high phototherapeutic indexes (>30) and selectivity vs noncancerous cells that neither CTSB inhibition nor photosensitization gives alone. Our work confirms that singlet oxygen production and CTSB inactivation is highly synergistic and a promising method for killing cancer cells. Furthermore, this ability to trigger intracellular inactivation of CTSB with light provides researchers with a powerful photochemical tool for probing biochemical processes on short time scales.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Boro/química , Catepsina B/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Luz , Neoplasias/patologia , Linhagem Celular Tumoral , Inibidores de Cisteína Proteinase/química , Humanos , Estresse Oxidativo
6.
Chem Sci ; 8(6): 4231-4241, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719673

RESUMO

Carbocations are widely viewed to be closed-shell singlet electrophiles. Here, computations show that azulenyl-substituted carbocations have triplet ground states. This triplet ground state for azulenyl carbocations stands in striking contrast to the isomeric naphthenyl carbocation, which is a normal closed-shell singlet with a large singlet-triplet gap. Furthermore, substitution of the azulenyl carbocation can substantially alter the energy gap between the different electronic configurations and can manipulate the ground state towards either the singlet or the triplet state depending on the nature and location of the substituent. A detailed investigation into the origin of this spin state reversal, including NICS calculations, structural effects, substitution patterns, orbital analysis, and detailed linear free-energy relationships allowed us to distill a set of principles that caused these azulenyl carbocations to have such low-lying diradical states. The fundamental origin of this effect mostly centers on singlet state destabilization from increasing antiaromatic character, in combination with a smaller, but important, Baird triplet state aromatic stabilization. We find that azulene is not unique, as extension of these principles allowed us to generate simple rules to predict an entire class of analogous non-alternant carbocation and carbanion structures with low-energy or ground state diradical states, including a purely hydrocarbon triplet cation with a large singlet-triplet gap of 8 kcal mol-1. Although these ions have innocuous-looking Lewis structures, these triplet diradical ions are likely to have substantially different reactivity and properties than typical closed-shell singlet ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA