Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Sci Technol ; 55(4): 2285-2295, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33525877

RESUMO

In this first mass-related survey of microplastics (MPs, <1 mm) in the German Bight (North Sea, 2.5 m water depth), spatial load, temporal variations, and potential sources were examined. Relevant plastic types were detected using pyrolysis-gas chromatography-mass spectrometry/thermochemolysis (Py-GC/MS). This suitable method provides qualitative and trace-level polymer or polymer cluster-specific mass quantitative MP data. Neither MP concentration (2-1396 µg m-3) nor type distribution was homogeneous. Concentrations appeared to be substantially influenced by meteorological and oceanographic conditions. The coastal MP-type composition showed an overprint indicating a packaging waste-related signal. Considerably different compositions were observed in central and estuarine areas. Here, a close relation to marine (antifouling) coating particles, i.e., abrased chlorinated rubber-, acryl-styrene-, and epoxide binder-containing particles are hypothesized as the main MP source, indicating ship "skid marks". They represent a dominant, toxicologically relevant but underestimated marine-based MP share, inverting the widely cited 80% terrestrial- to 20% marine-based debris ratio for MPs. In consequence of the findings, polymer clusters attributed to the basic polymers polyethylene, polypropylene, polystyrene, poly(ethylene terephthalate), poly(vinyl chloride), poly(methyl methacrylate), and polycarbonate are proposed for Py-GC/MS MPs mass determination based on specific thermal decomposition products linked to related polymer structural units.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Mar do Norte , Plásticos/análise , Pirólise , Navios , Poluentes Químicos da Água/análise
2.
Sensors (Basel) ; 21(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668113

RESUMO

Due to the rapid development of the Internet of Things (IoT) and consequently, the availability of more and more IoT data sources, mechanisms for searching and integrating IoT data sources become essential to leverage all relevant data for improving processes and services. This paper presents the IoT search framework IoTCrawler. The IoTCrawler framework is not only another IoT framework, it is a system of systems which connects existing solutions to offer interoperability and to overcome data fragmentation. In addition to its domain-independent design, IoTCrawler features a layered approach, offering solutions for crawling, indexing and searching IoT data sources, while ensuring privacy and security, adaptivity and reliability. The concept is proven by addressing a list of requirements defined for searching the IoT and an extensive evaluation. In addition, real world use cases showcase the applicability of the framework and provide examples of how it can be instantiated for new scenarios.

3.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008795

RESUMO

Class I histone deacetylases (HDACs) are key regulators of cell proliferation and they are frequently dysregulated in cancer cells. We report here the synthesis of a novel series of class-I selective HDAC inhibitors (HDACi) containing a 2-aminobenzamide moiety as a zinc-binding group connected with a central (piperazin-1-yl)pyrazine or (piperazin-1-yl)pyrimidine moiety. Some of the compounds were additionally substituted with an aromatic capping group. Compounds were tested in vitro against human HDAC1, 2, 3, and 8 enzymes and compared to reference class I HDACi (Entinostat (MS-275), Mocetinostat, CI994 and RGFP-966). The most promising compounds were found to be highly selective against HDAC1, 2 and 3 over the remaining HDAC subtypes from other classes. Molecular docking studies and MD simulations were performed to rationalize the in vitro data and to deduce a complete structure activity relationship (SAR) analysis of this novel series of class-I HDACi. The most potent compounds, including 19f, which blocks HDAC1, HDAC2, and HDAC3, as well as the selective HDAC1/HDAC2 inhibitors 21a and 29b, were selected for further cellular testing against human acute myeloid leukemia (AML) and erythroleukemic cancer (HEL) cells, taking into consideration their low toxicity against human embryonic HEK293 cells. We found that 19f is superior to the clinically tested class-I HDACi Entinostat (MS-275). Thus, 19f is a new and specific HDACi with the potential to eliminate blood cancer cells of various origins.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Simulação de Acoplamento Molecular , Pirazinas/química , ortoaminobenzoatos/química , ortoaminobenzoatos/síntese química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/síntese química , Benzamidas/química , Benzamidas/farmacologia , Linhagem Celular Tumoral , Células HEK293 , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacocinética , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia
4.
Anal Bioanal Chem ; 412(30): 8283-8298, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33104827

RESUMO

Analysis of microplastics (MP) in environmental samples is an emerging field, which is performed with various methods and instruments based either on spectroscopy or thermoanalytical methods. In general, both approaches result in two different types of data sets that are either mass or particle number related. Depending on detection limits of the respective method and instrumentation the derived polymer composition trends may vary. In this study, we compare the results of hyperspectral Fourier-transform infrared (FTIR) imaging analysis and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) analysis performed on a set of environmental samples that differ in complexity and degree of microplastic contamination. The measurements were conducted consecutively, and on exactly the same sample. First, the samples were investigated with FTIR using aluminum oxide filters; subsequently, these were crushed, transferred to glass fiber filters, in pyrolysis cups, and measured via Py-GC/MS. After a general data harmonization step, the trends in MP contamination were thoroughly investigated with regard to the respective sample set and the derived polymer compositions. While the overall trends in MP contamination were very similar, differences were observed in the polymer compositions. Furthermore, polymer masses were empirically calculated from FTIR data and compared with the Py-GC/MS results. Here, a most plausible shape-related overestimation of the calculated polymer masses was observed in samples with larger particles and increased particle numbers. Taking into account the different measurement principles of both methods, all results were examined and discussed, and future needs for harmonization of intermethodological results were identified and highlighted. Graphical abstract.

5.
Anal Bioanal Chem ; 410(21): 5313-5327, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29909455

RESUMO

In recent years, many studies on the analysis of microplastics (MP) in environmental samples have been published. These studies are hardly comparable due to different sampling, sample preparation, as well as identification and quantification techniques. Here, MP identification is one of the crucial pitfalls. Visual identification approaches using morphological criteria alone often lead to significant errors, being especially true for MP fibers. Reliable, chemical structure-based identification methods are indispensable. In this context, the frequently used vibrational spectroscopic techniques but also thermoanalytical methods are established. However, no critical comparison of these fundamentally different approaches has ever been carried out with regard to analyzing MP in environmental samples. In this blind study, we investigated 27 single MP particles and fibers of unknown material isolated from river sediments. Successively micro-attenuated total reflection Fourier transform infrared spectroscopy (µ-ATR-FTIR) and pyrolysis gas chromatography-mass spectrometry (py-GCMS) in combination with thermochemolysis were applied. Both methods differentiated between plastic vs. non-plastic in the same way in 26 cases, with 19 particles and fibers (22 after re-evaluation) identified as the same polymer type. To illustrate the different approaches and emphasize the complementarity of their information content, we exemplarily provide a detailed comparison of four particles and three fibers and a critical discussion of advantages and disadvantages of both methods.

6.
Environ Sci Technol ; 51(9): 5052-5060, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28391690

RESUMO

The content of microplastics (MP) in the environment is constantly growing. Since the environmental relevance, particularly bioavailability, rises with decreasing particle size, the knowledge of the MP proportion in habitats and organisms is of gaining importance. The reliable recognition of MP particles is limited and underlies substantial uncertainties. Therefore spectroscopic methods are necessary to ensure the plastic nature of isolated particles, determine the polymer type and obtain particle count related quantitative data. In this study Curie-Point pyrolysis-gas chromatography-mass spectrometry combined with thermochemolysis is shown to be an excellent analytical tool to simultaneously identify and optionally quantify MP in environmental samples on a polymer specific mass related trace level. The method is independent of any mechanical preselection or particle appearance. For this purpose polymer characteristic pyrolysis products and their indicative fragment ions were used to analyze eight common types of plastics. Further aspects of calibration, recoveries, and potential matrix effects are discussed. The method is exemplarily applied on selected fish samples after an enzymatic-chemically pretreatment. This new approach with mass-related results is complementary to established FT-IR and Raman methods providing particle counts of individual polymer particles.


Assuntos
Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Animais , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água
7.
J Adv Res ; 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37467961

RESUMO

INTRODUCTION: Posttranslational modification of proteins by reversible acetylation regulates key biological processes. Histone deacetylases (HDACs) catalyze protein deacetylation and are frequently dysregulated in tumors. This has spurred the development of HDAC inhibitors (HDACi). Such epigenetic drugs modulate protein acetylation, eliminate tumor cells, and are approved for the treatment of blood cancers. OBJECTIVES: We aimed to identify novel, nanomolar HDACi with increased potency over existing agents and selectivity for the cancer-relevant class I HDACs (HDAC1,-2,-3,-8). Moreover, we wanted to define how such drugs control the apoptosis-autophagy interplay. As test systems, we used human leukemic cells and embryonic kidney-derived cells. METHODS: We synthesized novel pyrimidine-hydroxamic acid HDACi (KH9/KH16/KH29) and performed in vitro activity assays and molecular modeling of their direct binding to HDACs. We analyzed how these HDACi affect leukemic cell fate, acetylation, and protein expression with flow cytometry and immunoblot. The publicly available DepMap database of CRISPR-Cas9 screenings was used to determine sensitivity factors across human leukemic cells. RESULTS: Novel HDACi show nanomolar activity against class I HDACs. These agents are superior to the clinically used hydroxamic acid HDACi SAHA (vorinostat). Within the KH-series of compounds, KH16 (yanostat) is the most effective inhibitor of HDAC3 (IC50 = 6 nM) and the most potent inducer of apoptosis (IC50 = 110 nM; p < 0.0001) in leukemic cells. KH16 though spares embryonic kidney-derived cells. Global data analyses of knockout screenings verify that HDAC3 is a dependency factor in 115 human blood cancer cells of different lineages, independent of mutations in the tumor suppressor p53. KH16 alters pro- and anti-apoptotic protein expression, stalls cell cycle progression, and induces caspase-dependent processing of the autophagy proteins ULK1 and p62. CONCLUSION: These data reveal that HDACs are required to stabilize autophagy proteins through suppression of apoptosis in leukemic cells. HDAC3 appears as a valid anti-cancer target for pharmacological intervention.

8.
Appl Spectrosc ; 74(9): 1012-1047, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32249594

RESUMO

Microplastics are of major concerns for society and is currently in the focus of legislators and administrations. A small number of measures to reduce or remove primary sources of microplastics to the environment are currently coming into effect. At the moment, they have not yet tackled important topics such as food safety. However, recent developments such as the 2018 bill in California are requesting the analysis of microplastics in drinking water by standardized operational protocols. Administrations and analytical labs are facing an emerging field of methods for sampling, extraction, and analysis of microplastics, which complicate the establishment of standardized operational protocols. In this review, the state of the currently applied identification and quantification tools for microplastics are evaluated providing a harmonized guideline for future standardized operational protocols to cover these types of bills. The main focus is on the naked eye detection, general optical microscopy, the application of dye staining, flow cytometry, Fourier transform infrared spectroscopy (FT-Ir) and microscopy, Raman spectroscopy and microscopy, thermal degradation by pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) as well as thermo-extraction and desorption gas chromatography-mass spectrometry (TED-GC-MS). Additional techniques are highlighted as well as the combined application of the analytical techniques suggested. An outlook is given on the emerging aspect of nanoplastic analysis. In all cases, the methods were screened for limitations, field work abilities and, if possible, estimated costs and summarized into a recommendation for a workflow covering the demands of society, legislation, and administration in cost efficient but still detailed manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA