Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(12): 7560-7569, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30407014

RESUMO

Metal oxide microparticles with well-defined internal mesostructures are promising materials for a variety of different applications, but practical routes to such materials that allow the constituent structural length scales to be precisely tuned have thus far been difficult to realize. Herein, we describe a novel platform methodology that utilizes self-assembled block copolymer (BCP) microparticles synthesized by dispersion polymerization in supercritical CO2 (scCO2) as universal structure directing agents for both hydrolytic and nonhydrolytic sol-gel routes to metal oxides. Spherically structured poly(methyl methacrylate- block-4-vinylpyridine) (PMMA- b-P4VP) BCP microparticles are translated into a series of the corresponding organic/inorganic composites and pure inorganic derivatives with a high degree of fidelity for the metal oxides TiO2 and LiFePO4. The final products are comprised of particles close to 1 µm in size with a highly ordered internal morphology of interconnected spheres between 20-40 nm in size. Furthermore, our approach is readily scalable, enabling grams of pure or carbon-coated TiO2 and LiFePO4, respectively, to be fabricated in a facile two step route involving ambient temperature mixing and drying stages. Given that both length scales within these BCP microparticles can be controlled independently by minor variations in the reagent quantities used, the present general strategy could represent a milestone in the design and synthesis of hierarchical metal oxides with completely tunable dimensions.

2.
J Am Chem Soc ; 139(38): 13330-13341, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28780858

RESUMO

TiO2 (B) has attracted considerable attention in recent years because it exhibits the largest capacity among all studied titania polymorphs, with high rate performance for Li intercalation being achieved when this material is nanostructured. However, due to the complex nature of its lithiation mechanism and practical challenges in probing Li structure in nanostructured materials, a definitive understanding of the lithiation thermodynamics has yet to be established. A comprehensive mechanistic investigation of the TiO2 (B) nanoparticles is therefore presented using a combination of in situ/operando X-ray pair distribution function (PDF) and electrochemical techniques. The discharge begins with surface reactions in parallel with Li insertion into the subsurface of the nanoparticles. The Li bulk insertion starts with a single-phase reaction into the A2 site, a position adjacent to the b-channel. A change of the Li diffusion pathway from that along this open channel to that along the c-direction is likely to occur at the composition of Li0.25TiO2 until Li0.5TiO2 is attained, leading to a two-step A2-site incorporation with one step kinetically distinct from the other. Subsequent Li insertion involves the C' site, a position situated inside the channel, and follows a rapid two-phase reaction to form Li0.75TiO2. Due to the high diffusion barrier associated with the further lithiation, Li insertion into the A1 site, another position adjacent to the channel neighboring the A2 sites, is kinetically restricted. This study not only explores the lithiation reaction thermodynamics and mechanisms of nanoparticulate TiO2 (B) but also serves as a strong reference for future studies of the bulk phase, and for future calculations to study the Li transport properties of TiO2 (B).

3.
Soft Matter ; 11(6): 1226-7, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25600886

RESUMO

The article by Sorenson et al. (Soft Matter10, 8229, 2014) reports a novel phase formed by gemini surfactants in water, of symmetry P63/mcm and based on a triple intergrowth of three identical degree-three networks, known as 3etc(193). This phase is the first lyotropic liquid crystalline phase based on the intergrowth of a triplet of network- or labyrinth-like hydrophobic domains. We provide here results from self-consistent field theory that demonstrate that the same morphology is almost stable in standard AB diblock copolymer melts; at the phase transition between the double gyroid phase and the hexagonal columnar phase, the 3etc(193) morphology only incurs a marginal free energy penalty compared to the equilibrium phases. Interestingly, the ratio of lattice parameters c/a = 0.955 of the 3etc(193) as a diblock morphology is very close to that of the gemini surfactant phase and of the related IBN-9 mesoporous silicate phase (Han et al., Nat. Chem.1, 123, 2009). Based on the combination of these results, we hypothesise that the 3etc(193) morphology is likely a generic phase in soft materials, rather than an oddity.

4.
Mater Adv ; 3(1): 362-372, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128417

RESUMO

The spinel Li4Ti5O12 (LTO) is a promising lithium ion battery anode material with the potential to supplement graphite as an industry standard, but its low electrical conductivity and Li-ion diffusivity need to be overcome. Here, mesoporous LTO microspheres with carbon-coatings were formed by phase separation of a homopolymer from microphase-separated block copolymers of varying molar masses containing sol-gel precursors. Upon heating the composite underwent a sol-gel condensation reaction followed by the eventual pyrolysis of the polymer templates. The optimised mesoporous LTO microspheres demonstrated an excellent electrochemical performance with an excellent specific discharge capacity of 164 mA h g-1, 95% of which was retained after 1000 cycles at a C-rate of 10.

5.
ACS Appl Mater Interfaces ; 10(2): 1646-1653, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29266921

RESUMO

Lithium iron phosphate (LFP) is currently one of the main cathode materials used in lithium-ion batteries due to its safety, relatively low cost, and exceptional cycle life. To overcome its poor ionic and electrical conductivities, LFP is often nanostructured, and its surface is coated with conductive carbon (LFP/C). Here, we demonstrate a sol-gel based synthesis procedure that utilizes a block copolymer (BCP) as a templating agent and a homopolymer as an additional carbon source. The high-molecular-weight BCP produces self-assembled aggregates with the precursor-sol on the 10 nm scale, stabilizing the LFP structure during crystallization at high temperatures. This results in a LFP nanonetwork consisting of interconnected ∼10 nm-sized particles covered by a uniform carbon coating that displays a high rate performance and an excellent cycle life. Our "one-pot" method is facile and scalable for use in established battery production methodologies.

6.
ACS Appl Mater Interfaces ; 9(27): 22388-22397, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28609102

RESUMO

Mesoporous titania microspheres (MTMs) have been employed in many applications, including (photo)catalysis as well as energy conversion and storage. Their morphology offers a hierarchical structural design motif that lends itself to being incorporated into established large-scale fabrication processes. Despite the fact that device performance hinges on the precise morphological characteristics of these materials, control over the detailed mesopore structure and the tunability of the pore size remains a challenge. Especially the accessibility of a wide range of mesopore sizes by the same synthesis method is desirable, as this would allow for a comparative study of the relationship between structural features and performance. Here, we report a method that combines sol-gel chemistry with polymer micro- and macrophase separation to synthesize porous titania spheres with diameters in the micrometer range. The as-prepared MTMs exhibit well-defined, accessible porosities with mesopore sizes adjustable by the choice of the polymers. When applied as an anode material in lithium ion batteries (LIBs), the MTMs demonstrate excellent performance. The influence of the pore size and an in situ carbon coating on charge transport and storage is examined, providing important insights for the optimization of structured titania anodes in LIBs. Our synthesis strategy presents a facile one-pot approach that can be applied to different structure-directing agents and inorganic materials, thus further extending its scope of application.

7.
Sci Adv ; 3(4): e1603119, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28508050

RESUMO

The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly Thecla opisena that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline space-filling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient. When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template.


Assuntos
Borboletas , Retículo Endoplasmático , Membranas Intracelulares , Nanoestruturas/ultraestrutura , Pigmentos Biológicos/metabolismo , Asas de Animais , Animais , Borboletas/metabolismo , Borboletas/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Asas de Animais/metabolismo , Asas de Animais/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA