Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 23(3): 1148-1157, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35225593

RESUMO

Cellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques. As treatments, drying at elevated temperature, swelling, and swelling followed by drying at elevated temperatures were chosen. The cellulose films were prepared by spin coating a soluble cellulose derivative, trimethylsilyl cellulose, onto solid substrates followed by conversion to cellulose by HCl vapor. For the highest investigated humidity levels (97%), the layer thickness increased by ca. 40% corresponding to the incorporation of 3.6 molecules of water per anhydroglucose unit (AGU), independent of the cellulose source used. The aforementioned treatments affected this ratio significantly with drying being the most notable procedure (2.0 and 2.6 molecules per AGU). The alterations were investigated in real time with X-ray reflectivity and quartz crystal microbalance with dissipation, equipped with a humidity module to obtain information about changes in the thickness, roughness, and electron density of the films and qualitatively confirmed using grazing incidence small angle X-ray scattering measurements using synchrotron irradiation.


Assuntos
Celulose , Água , Celulose/química , Umidade , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de Quartzo , Água/química
2.
Commun Biol ; 1: 86, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271967

RESUMO

A central concept in molecular bioscience is how structure formation at different length scales is achieved. Here we use spider silk protein as a model to design new recombinant proteins that assemble into fibers. We made proteins with a three-block architecture with folded globular domains at each terminus of a truncated repetitive silk sequence. Aqueous solutions of these engineered proteins undergo liquid-liquid phase separation as an essential pre-assembly step before fibers can form by drawing in air. We show that two different forms of phase separation occur depending on solution conditions, but only one form leads to fiber assembly. Structural variants with one-block or two-block architectures do not lead to fibers. Fibers show strong adhesion to surfaces and self-fusing properties when placed into contact with each other. Our results show a link between protein architecture and phase separation behavior suggesting a general approach for understanding protein assembly from dilute solutions into functional structures.

3.
Carbohydr Polym ; 164: 49-56, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28325343

RESUMO

Nonspecific protein deposition on Lyocell fibers via a cationization step was explored by adsorption of two different N,N,N-trimethyl chitosan chlorides (TMCs). Both, the cationization and the subsequent protein deposition steps were performed and monitored in situ by evaluating the zeta potential using the streaming potential method. Both employed TMCs (degree of substitution with N+Me3Cl groups: 0.27 and 0.64) irreversibly adsorb on the fibers as proven by charge reversal (-12 to +7mV for both derivatives) after the final rinsing step. Onto these cationized fibers, BSA was deposited at different pH values (4, 5, and 7). Charge titrations revealed that close to the isoelectric point of BSA (4.7), BSA deposition was particularly favored, while at lower pH values (pH 4), hardly any adsorption took place due to electrostatic repulsion of the cationic fibers and the positively charged BSA. This work sets the foundation for further investigations to use zeta potential measurements for protein adsorption studies on fibrous materials.


Assuntos
Quitosana/química , Proteínas/química , Adsorção , Concentração de Íons de Hidrogênio , Soroalbumina Bovina/química , Eletricidade Estática , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA