Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(5): 1382-1391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38273110

RESUMO

Deficient gamma oscillations in prefrontal cortex (PFC) of individuals with schizophrenia appear to involve impaired inhibitory drive from parvalbumin-expressing interneurons (PVIs). Inhibitory drive from PVIs is regulated, in part, by RNA binding fox-1 homolog 1 (Rbfox1). Rbfox1 is spliced into nuclear or cytoplasmic isoforms, which regulate alternative splicing or stability of their target transcripts, respectively. One major target of cytoplasmic Rbfox1 is vesicle associated membrane protein 1 (Vamp1). Vamp1 mediates GABA release probability from PVIs, and the loss of Rbfox1 reduces Vamp1 levels which in turn impairs cortical inhibition. In this study, we investigated if the Rbfox1-Vamp1 pathway is altered in PVIs in PFC of individuals with schizophrenia by utilizing a novel strategy that combines multi-label in situ hybridization and immunohistochemistry. In the PFC of 20 matched pairs of schizophrenia and comparison subjects, cytoplasmic Rbfox1 protein levels were significantly lower in PVIs in schizophrenia and this deficit was not attributable to potential methodological confounds or schizophrenia-associated co-occurring factors. In a subset of this cohort, Vamp1 mRNA levels in PVIs were also significantly lower in schizophrenia and were predicted by lower cytoplasmic Rbfox1 protein levels across individual PVIs. To investigate the functional impact of Rbfox1-Vamp1 alterations in schizophrenia, we simulated the effect of lower GABA release probability from PVIs on gamma power in a computational model network of pyramidal neurons and PVIs. Our simulations showed that lower GABA release probability reduces gamma power by disrupting network synchrony while minimally affecting network activity. Finally, lower GABA release probability synergistically interacted with lower strength of inhibition from PVIs in schizophrenia to reduce gamma power non-linearly. Together, our findings suggest that the Rbfox1-Vamp1 pathway in PVIs is impaired in schizophrenia and that this alteration likely contributes to deficient PFC gamma power in the illness.


Assuntos
Interneurônios , Córtex Pré-Frontal , Fatores de Processamento de RNA , Esquizofrenia , Proteína 1 Associada à Membrana da Vesícula , Córtex Pré-Frontal/metabolismo , Humanos , Esquizofrenia/metabolismo , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Masculino , Feminino , Adulto , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Proteína 1 Associada à Membrana da Vesícula/genética , Pessoa de Meia-Idade , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transdução de Sinais/fisiologia , Ritmo Gama/fisiologia , RNA Mensageiro/metabolismo
2.
Neurobiol Dis ; 191: 106394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176569

RESUMO

BACKGROUND: Dorsolateral prefrontal cortex (DLPFC) dysfunction in schizophrenia appears to reflect alterations in layer 3 pyramidal neurons (L3PNs), including smaller cell bodies and lower expression of mitochondrial energy production genes. However, prior somal size studies used biased strategies for identifying L3PNs, and somal size and levels of energy production markers have not been assessed in individual L3PNs. STUDY DESIGN: We combined fluorescent in situ hybridization (FISH) of vesicular glutamate transporter 1 (VGLUT1) mRNA and immunohistochemical-labeling of NeuN to determine if the cytoplasmic distribution of VGLUT1 mRNA permits the unbiased identification and somal size quantification of L3PNs. Dual-label FISH for VGLUT1 mRNA and cytochrome C oxidase subunit 4I1 (COX4I1) mRNA, a marker of energy production, was used to assess somal size and COX4I1 transcript levels in individual DLPFC L3PNs from schizophrenia (12 males; 2 females) and unaffected comparison (13 males; 1 female) subjects. STUDY RESULTS: Measures of L3PN somal size with NeuN immunohistochemistry or VGLUT1 mRNA provided nearly identical results (ICC = 0.96, p < 0.0001). Mean somal size of VGLUT1-identified L3PNs was 8.7% smaller (p = 0.004) and mean COX4I1 mRNA levels per L3PN were 16.7% lower (p = 0.01) in schizophrenia. These measures were correlated across individual L3PNs in both subject groups (rrm = 0.81-0.86). CONCLUSIONS: This preliminary study presents a novel method for combining unbiased neuronal identification with quantitative assessments of somal size and mRNA levels. We replicated findings of smaller somal size and lower COX4I1 mRNA levels in DLPFC L3PNs in schizophrenia. The normal scaling of COX4I1 mRNA levels with somal size in schizophrenia suggests that lower markers of energy production are secondary to L3PN morphological alterations in the illness.


Assuntos
Esquizofrenia , Masculino , Humanos , Feminino , Hibridização in Situ Fluorescente , Córtex Pré-Frontal , Células Piramidais , RNA Mensageiro
3.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854057

RESUMO

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, it remains unclear whether similar biological processes occur during healthy aging, albeit to a lesser degree. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no changes in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th +/Vglut2 + neurons, Th and Vglut2 transcripts decreased with aging. Importantly, striatal Th and Vglut2 protein expression remained unchanged. In translating our findings to humans, we found no midbrain neurodegeneration during aging and identified age-related decreases in TH and VGLUT2 mRNA expression similar to mouse. Unlike mice, we discovered diminished density of striatal TH+ dopaminergic terminals in aged human subjects. However, TH and VGLUT2 protein expression were unchanged in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th + neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.

4.
Cell Rep ; 43(4): 113970, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38512868

RESUMO

To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.


Assuntos
Acoplamento Neurovascular , Animais , Camundongos , Acoplamento Neurovascular/fisiologia , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Vibrissas/fisiologia , Camundongos Endogâmicos C57BL , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Masculino , Córtex Cerebral/fisiologia , Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo
5.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38915638

RESUMO

In schizophrenia, layer 3 pyramidal neurons (L3PNs) in the dorsolateral prefrontal cortex (DLPFC) are thought to receive fewer excitatory synaptic inputs and to have lower expression levels of activity-dependent genes and of genes involved in mitochondrial energy production. In concert, these findings from previous studies suggest that DLPFC L3PNs are hypoactive in schizophrenia, disrupting the patterns of activity that are crucial for working memory, which is impaired in the illness. However, whether lower PN activity produces alterations in inhibitory and/or excitatory synaptic strength has not been tested in the primate DLPFC. Here, we decreased PN excitability in rhesus monkey DLPFC in vivo using adeno-associated viral vectors (AAVs) to produce Cre recombinase-mediated overexpression of Kir2.1 channels, a genetic silencing tool that efficiently decreases neuronal excitability. In acute slices prepared from DLPFC 7-12 weeks post-AAV microinjections, Kir2.1-overexpressing PNs had a significantly reduced excitability largely attributable to highly specific effects of the AAV-encoded Kir2.1 channels. Moreover, recordings of synaptic currents showed that Kir2.1-overexpressing DLPFC PNs had reduced strength of excitatory synapses whereas inhibitory synaptic inputs were not affected. The decrease in excitatory synaptic strength was not associated with changes in dendritic spine number, suggesting that excitatory synapse quantity was unaltered in Kir2.1-overexpressing DLPFC PNs. These findings suggest that, in schizophrenia, the excitatory synapses on hypoactive L3PNs are weaker and thus might represent a substrate for novel therapeutic interventions. Significance Statement: In schizophrenia, dorsolateral prefrontal cortex (DLPFC) pyramidal neurons (PNs) have both transcriptional and structural alterations that suggest they are hypoactive. PN hypoactivity is thought to produce synaptic alterations in schizophrenia, however the effects of lower neuronal activity on synaptic function in primate DLPFC have not been examined. Here, we used, for the first time in primate neocortex, adeno-associated viral vectors (AAVs) to reduce PN excitability with Kir2.1 channel overexpression and tested if this manipulation altered the strength of synaptic inputs onto the Kir2.1-overexpressing PNs. Recordings in DLPFC slices showed that Kir2.1 overexpression depressed excitatory (but not inhibitory), synaptic currents, suggesting that, in schizophrenia, the hypoactivity of PNs might be exacerbated by reduced strength of the excitatory synapses they receive.

6.
Cardiovasc Res ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056563

RESUMO

AIMS: Vein grafts are used for many indications, including bypass graft surgery and arterio-venous fistula (AVF) formation. However, patency following vein grafting or AVF formation is suboptimal for various reasons, including thrombosis, neointimal hyperplasia and adverse remodeling. Recently, endothelial to mesenchymal transition (EndMT) was found to contribute to neointimal hyperplasia in mouse vein grafts. We aimed to evaluate the clinical potential of inhibiting EndMT, and developed the first dedicated preclinical model to study the efficacy of local EndMT inhibition immediately prior to AVF creation. METHODS AND RESULTS: We first undertook pilot studies to optimize the creation of a femoral AVF in pigs and verify that EndMT contributes to neointimal formation. We then developed a method to achieve local in vivo SMAD3 knockdown by dwelling a lentiviral construct containing SMAD3 shRNA in the femoral vein prior to AVF creation. Next, in Phase 1, 6 pigs were randomized to SMAD3 knockdown or control lentivirus to evaluate the effectiveness of SMAD3 knockdown and EndMT inhibition 8 days after AVF creation. In Phase 2, 16 pigs were randomized to SMAD3 knockdown or control lentivirus and were evaluated to assess longer-term effects on AVF diameter, patency and related measures at 30 days after AVF creation.In Phase 1, compared to controls, SMAD3 knockdown achieved a 75% reduction in the proportion of CD31+ endothelial cells co-expressing SMAD3 (p<0.001), and also a significant reduction in the extent of EndMT (p<0.05). In Phase 2, compared to controls, SMAD3 knockdown was associated with an increase in the minimum diameter of the venous limb of the AVF (1.56±1.66 versus 4.26±1.71mm, p<0.01) and a reduced degree of stenosis (p<0.01). Consistent with this, neointimal thickness was reduced in the SMAD3 knockdown group (0.88±0.51 versus 0.45±0.19mm, p<0.05). Furthermore, endothelial integrity (the proportion of luminal cells expressing endothelial markers) was improved in the SMAD3 knockdown group (p<0.05). CONCLUSIONS: EndMT inhibition in a preclinical AVF model by local SMAD3 knockdown using gene therapy led to reduced neointimal hyperplasia, increased endothelialization and a reduction in the degree of AVF stenosis. This provides important proof-of-concept to pursue this approach as a clinical strategy to improve the patency of AVFs and other vein grafts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA