Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2318652121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687781

RESUMO

Water oxidation on magnetic catalysts has generated significant interest due to the spin-polarization effect. Recent studies have revealed that the disappearance of magnetic domain wall upon magnetization is responsible for the observed oxygen evolution reaction (OER) enhancement. However, an atomic picture of the reaction pathway remains unclear, i.e., which reaction pathway benefits most from spin-polarization, the adsorbent evolution mechanism, the intermolecular mechanism (I2M), the lattice oxygen-mediated one, or more? Here, using three model catalysts with distinguished atomic chemistries of active sites, we are able to reveal the atomic-level mechanism. We found that spin-polarized OER mainly occurs at interconnected active sites, which favors direct coupling of neighboring ligand oxygens (I2M). Furthermore, our study reveals the crucial role of lattice oxygen participation in spin-polarized OER, significantly facilitating the coupling kinetics of neighboring oxygen radicals at active sites.

2.
Bioscience ; 73(11): 808-813, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38125825

RESUMO

Over decades, pesticide regulations have cycled between approval and implementation, followed by the discovery of negative effects on nontarget organisms that result in new regulations, pesticides, and harmful effects. This relentless pattern undermines the capacity to protect the environment from pesticide hazards and frustrates end users that need pest management tools. Wild pollinating insects are in decline, and managed pollinators such as honey bees are experiencing excessive losses, which threatens sustainable food security and ecosystem function. An increasing number of studies demonstrate the negative effects of field-realistic exposure to pesticides on pollinator health and fitness, which contribute to pollinator declines. Current pesticide approval processes, although they are superior to past practices, clearly continue to fail to protect pollinator health. In the present article, we provide a conceptual framework to reform cyclical pesticide approval processes and better protect pollinators.

3.
Small Methods ; : e2400627, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129348

RESUMO

Molecular catalysts represent an exceptional class of materials in the realm of electrochemical carbon dioxide reduction (CO2RR), offering distinct advantages owing to their adaptable structure, which enables precise control of electronic configurations and outstanding performance in CO2RR. This study introduces an innovative approach to heterogeneous electrochemical CO2RR in an aqueous environment, utilizing a newly synthesized N4-macrocyclic cobalt complex generated through a dimerization coupling reaction. By incorporating the quaterpyridine moiety, this cobalt complex exhibits the capability to catalyze CO2RR at low overpotentials and reaches near-unity CO production across a wide potential range, as verified by the online mass spectrometry and in situ attenuated total reflectance-Fourier transform infrared spectroscopy. Comprehensive computational models demonstrate the superiority of utilizing quarterpyridine moiety in mediating CO2 conversion compared to the counterpart. This work not only propels the field of electrochemical CO2RR but also underscores the promising potential of cobalt complexes featuring quaterpyridine moieties in advancing sustainable CO2 conversion technologies within aqueous environments.

4.
Adv Sci (Weinh) ; 11(31): e2402321, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889333

RESUMO

An efficient method for the synthesis of a self-supporting carbon framework (denoted Gra-GC-MoSe2) is proposed with a triple-gradient structure-in sodiophilic sites, pore volume, and electrical conductivity-which facilitates the highly efficient regulation of Na deposition. In situ and ex situ measurements, together with theoretical calculations, reveal that the gradient distribution of Se heteroatoms in MoSe2, and its derivatives tailor the sodiophilicity, while the gradient distribution of porous nanostructures homogenizes the Na+ diffusion. Therefore, Na deposition occurs from the bottom to the top of the Gra-GC-MoSe2 framework without dendrite formation. In addition, the gradient in electrical conductivity ensures the stripping process does not lead to dead Na. As a result, a Gra-GC-MoSe2 modified Na anode (Na@Gra-GC-MoSe2) shows impressive cycling stability with a high average Coulombic efficiency in an asymmetric cell. In symmetric cells, it also exhibits a long cycling life of 2000 h with a low polarization voltage and works stably even under a large capacity of 10 mAh cm-2. Moreover, a Na@Gra-GC-MoSe2|| Na3V2(PO4)3 full cell delivers a high energy density with an excellent cycling performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA