Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L786-L795, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38713613

RESUMO

Humans living at high-altitude (HA) have adapted to this environment by increasing pulmonary vascular and alveolar growth. RNA sequencing data from a novel murine model that mimics this phenotypical response to HA suggested estrogen signaling via estrogen receptor alpha (ERα) may be involved in this adaptation. We hypothesized ERα was a key mediator in the cardiopulmonary adaptation to chronic hypoxia and sought to delineate the mechanistic role ERα contributes to this process by exposing novel loss-of-function ERα mutant (ERαMut) rats to simulated HA. ERα mutant or wild-type (wt) rats were exposed to normoxia or hypoxia starting at conception and continued postnatally until 6 wk of age. Both wt and ERαMut animals born and raised in hypoxia exhibited lower body mass and higher hematocrits, total alveolar volumes (Va), diffusion capacities of carbon monoxide (DLCO), pulmonary arteriole (PA) wall thickness, and Fulton indices than normoxia animals. Right ventricle adaptation was maintained in the setting of hypoxia. Although no major physiologic differences were seen between wt and ERαMut animals at either exposure, ERαMut animals exhibited smaller mean linear intercepts (MLI) and increased PA total and lumen areas. Hypoxia exposure or ERα loss-of-function did not affect lung mRNA abundance of vascular endothelial growth factor, angiopoietin 2, or apelin. Sexual dimorphisms were noted in PA wall thickness and PA lumen area in ERαMut rats. In summary, in room air-exposed rats and rats with peri- and postnatal hypoxia exposure, ERα loss-of-function was associated with decreased alveolar size (primarily driven by hypoxic animals) and increased PA remodeling.NEW & NOTEWORTHY By exposing novel loss-of-function estrogen receptor alpha (Erα) mutant rats to a novel model of human high-altitude exposure, we demonstrate that ERα has subtle but inconsistent effects on endpoints relevant to cardiopulmonary adaptation to chronic hypoxia. Given that we observed some histologic, sex, and genotype differences, further research into cell-specific effects of ERα during hypoxia-induced cardiopulmonary adaptation is warranted.


Assuntos
Adaptação Fisiológica , Receptor alfa de Estrogênio , Hipóxia , Animais , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Ratos , Masculino , Pulmão/metabolismo , Pulmão/patologia , Altitude , Modelos Animais de Doenças , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
2.
Am J Respir Cell Mol Biol ; 67(4): 459-470, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35895592

RESUMO

CD55 or decay accelerating factor (DAF), a ubiquitously expressed glycosylphosphatidylinositol (GPI)-anchored protein, confers a protective threshold against complement dysregulation which is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Since lung fibrosis is associated with downregulation of DAF, we hypothesize that overexpression of DAF in fibrosed lungs will limit fibrotic injury by restraining complement dysregulation. Normal primary human alveolar type II epithelial cells (AECs) exposed to exogenous complement 3a or 5a, and primary AECs purified from IPF lungs demonstrated decreased membrane-bound DAF expression with concurrent increase in the endoplasmic reticulum (ER) stress protein, ATF6. Increased loss of extracellular cleaved DAF fragments was detected in normal human AECs exposed to complement 3a or 5a, and in lungs of IPF patients. C3a-induced ATF6 expression and DAF loss was inhibited using pertussis toxin (an enzymatic inactivator of G-protein coupled receptors), in murine AECs. Treatment with soluble DAF abrogated tunicamycin-induced C3a secretion and ER stress (ATF6 and BiP expression) and restored epithelial cadherin. Bleomycin-injured fibrotic mice subjected to lentiviral overexpression of DAF demonstrated diminished levels of local collagen deposition and complement activation. Further analyses showed diminished release of DAF fragments, as well as reduction in apoptosis (TUNEL and caspase 3/7 activity), and ER stress-related transcripts. Loss-of-function studies using Daf1 siRNA demonstrated worsened lung fibrosis detected by higher mRNA levels of Col1a1 and epithelial injury-related Muc1 and Snai1, with exacerbated local deposition of C5b-9. Our studies provide a rationale for rescuing fibrotic lungs via DAF induction that will restrain complement dysregulation and lung injury.


Assuntos
Fibrose Pulmonar Idiopática , Lesão Pulmonar , Animais , Bleomicina , Antígenos CD55/genética , Antígenos CD55/metabolismo , Caderinas , Caspase 3/metabolismo , Complemento C3a , Complexo de Ataque à Membrana do Sistema Complemento , Proteínas do Sistema Complemento , Fibrose , Glicosilfosfatidilinositóis , Proteínas de Choque Térmico , Humanos , Fibrose Pulmonar Idiopática/patologia , Lesão Pulmonar/induzido quimicamente , Camundongos , Toxina Pertussis , RNA Mensageiro , RNA Interferente Pequeno , Tunicamicina
3.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R561-R570, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036455

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by exercise intolerance. Muscle blood flow may be reduced during exercise in PAH; however, this has not been directly measured. Therefore, we investigated blood flow during exercise in a rat model of monocrotaline (MCT)-induced pulmonary hypertension (PH). Male Sprague-Dawley rats (∼200 g) were injected with 60 mg/kg MCT (MCT, n = 23) and vehicle control (saline; CON, n = 16). Maximal rate of oxygen consumption (V̇o2max) and voluntary running were measured before PH induction. Right ventricle (RV) morphology and function were assessed via echocardiography and invasive hemodynamic measures. Treadmill running at 50% V̇o2max was performed by a subgroup of rats (MCT, n = 8; CON, n = 7). Injection of fluorescent microspheres determined muscle blood flow via photo spectroscopy. MCT demonstrated a severe phenotype via RV hypertrophy (Fulton index, 0.61 vs. 0.31; P < 0.001), high RV systolic pressure (51.5 vs. 22.4 mmHg; P < 0.001), and lower V̇o2max (53.2 vs. 71.8 mL·min-1·kg-1; P < 0.0001) compared with CON. Two-way ANOVA revealed exercising skeletal muscle blood flow relative to power output was reduced in MCT compared with CON (P < 0.001), and plasma lactate was increased in MCT (10.8 vs. 4.5 mmol/L; P = 0.002). Significant relationships between skeletal blood flow and blood lactate during exercise were observed for individual muscles (r = -0.58 to -0.74; P < 0.05). No differences in capillarization were identified. Skeletal muscle blood flow is significantly reduced in experimental PH. Reduced blood flow during exercise may be, at least in part, consequent to reduced exercise intensity in PH. This adds further evidence of peripheral muscle dysfunction and exercise intolerance in PAH.


Assuntos
Hipertensão Pulmonar , Animais , Masculino , Ratos , Modelos Animais de Doenças , Hemodinâmica , Hipertensão Pulmonar/induzido quimicamente , Lactatos , Monocrotalina/toxicidade , Músculo Esquelético , Artéria Pulmonar , Ratos Sprague-Dawley
4.
Am J Respir Cell Mol Biol ; 58(3): 402-411, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29111769

RESUMO

Cigarette smoke (CS) exposure is a major risk factor for the development of emphysema, a common disease characterized by loss of cells comprising the lung parenchyma. The mechanisms of cell injury leading to emphysema are not completely understood but are thought to involve persistent cytotoxic or mutagenic DNA damage induced by CS. Using complementary cell culture and mouse models of CS exposure, we investigated the role of the DNA repair protein, xeroderma pigmentosum group C (XPC), on CS-induced DNA damage repair and emphysema. Expression of XPC was decreased in mouse lungs after chronic CS exposure and XPC knockdown in cultured human lung epithelial cells decreased their survival after CS exposure due to activation of the intrinsic apoptosis pathway. Similarly, cell autophagy and apoptosis were increased in XPC-deficient mouse lungs and were further increased by CS exposure. XPC deficiency was associated with structural and functional changes characteristic of emphysema, which were worsened by age, similar to levels observed with chronic CS exposure. Taken together, these findings suggest that repair of DNA damage by XPC plays an important and previously unrecognized role in the maintenance of alveolar structures. These findings support that loss of XPC, possibly due to chronic CS exposure, promotes emphysema development and further supports a link between DNA damage, impaired DNA repair, and development of emphysema.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Enfisema Pulmonar/genética , Fumaça/efeitos adversos , Fumar/efeitos adversos , Xeroderma Pigmentoso/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Transformada , Feminino , Predisposição Genética para Doença/genética , Humanos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tecido Parenquimatoso/patologia , Enfisema Pulmonar/patologia
5.
FASEB J ; 31(12): 5543-5556, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28821630

RESUMO

Interleukin 17A (IL-17A) and complement (C') activation have each been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We have reported that IL-17A induces epithelial injury via TGF-ß in murine bronchiolitis obliterans; that TGF-ß and the C' cascade present signaling interactions in mediating epithelial injury; and that the blockade of C' receptors mitigates lung fibrosis. In the present study, we investigated the role of IL-17A in regulating C' in lung fibrosis. Microarray analyses of mRNA isolated from primary normal human small airway epithelial cells indicated that IL-17A (100 ng/ml; 24 h; n = 5 donor lungs) induces C' components (C' factor B, C3, and GPCR kinase isoform 5), cytokines (IL8, -6, and -1B), and cytokine ligands (CXCL1, -2, -3, -5, -6, and -16). IL-17A induces protein and mRNA regulation of C' components and the synthesis of active C' 3a (C3a) in normal primary human alveolar type II epithelial cells (AECs). Wild-type mice subjected to IL-17A neutralization and IL-17A knockout (il17a-/- ) mice were protected against bleomycin (BLEO)-induced fibrosis and collagen deposition. Further, BLEO-injured il17a-/- mice had diminished levels of circulating Krebs Von Den Lungen 6 (alveolar epithelial injury marker), local caspase-3/7, and local endoplasmic reticular stress-related genes. BLEO-induced local C' activation [C3a, C5a, and terminal C' complex (C5b-9)] was attenuated in il17a-/- mice, and IL-17A neutralization prevented the loss of epithelial C' inhibitors (C' receptor-1 related isoform Y and decay accelerating factor), and an increase in local TUNEL levels. RNAi-mediated gene silencing of il17a in fibrotic mice arrested the progression of lung fibrosis, attenuated cellular apoptosis (caspase-3/7) and lung deposition of collagen and C' (C5b-9). Compared to normals, plasma from IPF patients showed significantly higher hemolytic activity. Our findings demonstrate that limiting complement activation by neutralizing IL-17A is a potential mechanism in ameliorating lung fibrosis.-Cipolla, E., Fisher, A. J., Gu, H., Mickler, E. A., Agarwal, M., Wilke, C. A., Kim, K. K., Moore, B. B., Vittal, R. IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis.


Assuntos
Bleomicina/farmacologia , Ativação do Complemento/efeitos dos fármacos , Fibrose/metabolismo , Interleucina-17/deficiência , Interleucina-17/metabolismo , Pneumopatias/metabolismo , Idoso , Animais , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Fibrose/genética , Imunofluorescência , Hemólise/genética , Hemólise/fisiologia , Humanos , Interleucina-17/genética , Pneumopatias/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
6.
Am J Physiol Regul Integr Comp Physiol ; 312(2): R197-R210, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784688

RESUMO

Exercise is beneficial in pulmonary arterial hypertension (PAH), although studies to date indicate little effect on the elevated pulmonary pressures or maladaptive right ventricle (RV) hypertrophy associated with the disease. For chronic left ventricle failure, high-intensity interval training (HIIT) promotes greater endothelial stimulation and superior benefit than customary continuous exercise training (CExT); however, HIIT has not been tested for PAH. Therefore, here we investigated acute and chronic responses to HIIT vs. CExT in a rat model of monocrotaline (MCT)-induced mild PAH. Six weeks of treadmill training (5 times/wk) were performed, as either 30 min HIIT or 60 min low-intensity CExT. To characterize acute hemodynamic responses to the two approaches, novel recordings of simultaneous pulmonary and systemic pressures during running were obtained at pre- and 2, 4, 6, and 8 wk post-MCT using long-term implantable telemetry. MCT-induced decrement in maximal aerobic capacity was ameliorated by both HIIT and CExT, with less pronounced pulmonary vascular remodeling and no increase in RV inflammation or apoptosis observed. Most importantly, only HIIT lowered RV systolic pressure, RV hypertrophy, and total pulmonary resistance, and prompted higher cardiac index that was complemented by a RV increase in the positive inotrope apelin and reduced fibrosis. HIIT prompted a markedly pulsatile pulmonary pressure during running and was associated with greater lung endothelial nitric oxide synthase after 6 wk. We conclude that HIIT may be superior to CExT for improving hemodynamics and maladaptive RV hypertrophy in PAH. HIIT's superior outcomes may be explained by more favorable pulmonary vascular endothelial adaptation to the pulsatile HIIT stimulus.


Assuntos
Treinamento Intervalado de Alta Intensidade/métodos , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/terapia , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/terapia , Disfunção Ventricular Direita/terapia , Animais , Hipertensão Pulmonar/complicações , Hipertrofia Ventricular Direita/etiologia , Masculino , Condicionamento Físico Animal/métodos , Resistência Física/fisiologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia
7.
FASEB J ; 30(6): 2336-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26956419

RESUMO

Complement activation, an integral arm of innate immunity, may be the critical link to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins-complement component 3a (C3a) and complement component 5a (C5a)-in IPF, which interact with TGF-ß and augment epithelial injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung fibrosis. In normal primary human fetal lung fibroblasts, C3a and C5a induces mesenchymal activation, matrix synthesis, and the expression of their respective receptors. We investigated the role of C3aR and C5aR in lung fibrosis by using bleomycin-injured mice with fibrotic lungs, elevated local C3a and C5a, and overexpression of their receptors via pharmacologic and RNA interference interventions. Histopathologic examination revealed an arrest in disease progression and attenuated lung collagen deposition (Masson's trichrome, hydroxyproline, collagen type I α 1 chain, and collagen type I α 2 chain). Pharmacologic or RNA interference-specific interventions suppressed complement activation (C3a and C5a) and soluble terminal complement complex formation (C5b-9) locally and active TGF-ß1 systemically. C3aR/C5aR antagonists suppressed local mRNA expressions of tgfb2, tgfbr1/2, ltbp1/2, serpine1, tsp1, bmp1/4, pdgfbb, igf1, but restored the proteoglycan, dcn Clinically, compared with pathologically normal human subjects, patients with IPF presented local induction of C5aR, local and systemic induction of soluble C5b-9, and amplified expression of C3aR/C5aR in lesions. The blockade of C3aR and C5aR arrested the progression of fibrosis by attenuating local complement activation and TGF-ß/bone morphologic protein signaling as well as restoring decorin, which suggests a promising therapeutic strategy for patients with IPF.-Gu, H., Fisher, A. J., Mickler, E. A., Duerson, F., III, Cummings, O. W., Peters-Golden, M., Twigg, H. L., III, Woodruff, T. M., Wilkes, D. S., Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.


Assuntos
Fibroblastos/metabolismo , Fibrose Pulmonar/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Complemento/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Linhagem Celular , Cadeia alfa 1 do Colágeno Tipo I , Complexo de Ataque à Membrana do Sistema Complemento/genética , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica/fisiologia , Humanos , Lesão Pulmonar/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fibrose Pulmonar/induzido quimicamente , Interferência de RNA , Receptor da Anafilatoxina C5a/genética , Receptores de Complemento/genética , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
8.
Am J Respir Cell Mol Biol ; 55(6): 889-898, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27494303

RESUMO

Airway epithelial CD55 down-regulation occurs in several hypoxia-associated pulmonary diseases, but the mechanism is unknown. Using in vivo and in vitro assays of pharmacologic inhibition and gene silencing, the current study investigated the role of hypoxia-inducible factor (HIF)-1α in regulating airway epithelial CD55 expression. Hypoxia down-regulated CD55 expression on small-airway epithelial cells in vitro, and in murine lungs in vivo; the latter was associated with local complement activation. Treatment with pharmacologic inhibition or silencing of HIF-1α during hypoxia-recovered CD55 expression in small-airway epithelial cells. HIF-1α overexpression or blockade, in vitro or in vivo, down-regulated CD55 expression. Collectively, these data show a key role for HIF-1α in regulating the expression of CD55 on airway epithelium.


Assuntos
Antígenos CD55/metabolismo , Epitélio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/metabolismo , Aminoácidos Dicarboxílicos/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Ativação do Complemento/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
9.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L375-88, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288487

RESUMO

17ß-Estradiol (E2) exerts protective effects on right ventricular (RV) function in pulmonary arterial hypertension (PAH). Since acute exercise-induced increases in afterload may lead to RV dysfunction in PAH, we sought to determine whether E2 allows for superior RV adaptation after an acute exercise challenge. We studied echocardiographic, hemodynamic, structural, and biochemical markers of RV function in male and female rats with sugen/hypoxia (SuHx)-induced pulmonary hypertension, as well as in ovariectomized (OVX) SuHx females, with or without concomitant E2 repletion (75 µg·kg(-1)·day(-1)) immediately after 45 min of treadmill running at 75% of individually determined maximal aerobic capacity (75% aerobic capacity reserve). Compared with males, intact female rats exhibited higher stroke volume and cardiac indexes, a strong trend for better RV compliance, and less pronounced increases in indexed total pulmonary resistance. OVX abrogated favorable RV adaptations, whereas E2 repletion after OVX markedly improved RV function. E2's effects on pulmonary vascular remodeling were complex and less robust than its RV effects. Postexercise hemodynamics in females with endogenous or exogenous E2 were similar to hemodynamics in nonexercised controls, whereas OVX rats exhibited more severely altered postexercise hemodynamics. E2 mediated inhibitory effects on RV fibrosis and attenuated increases in RV collagen I/III ratio. Proapoptotic signaling, endothelial nitric oxide synthase phosphorylation, and autophagic flux markers were affected by E2 depletion and/or repletion. Markers of impaired autophagic flux correlated with endpoints of RV structure and function. Endogenous and exogenous E2 exerts protective effects on RV function measured immediately after an acute exercise challenge. Harnessing E2's mechanisms may lead to novel RV-directed therapies.


Assuntos
Estradiol/fisiologia , Hipertensão Pulmonar/fisiopatologia , Adaptação Fisiológica , Animais , Pressão Arterial , Autofagia , Estradiol/farmacologia , Feminino , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Consumo de Oxigênio , Esforço Físico , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Caracteres Sexuais , Volume Sistólico , Remodelação Vascular , Disfunção Ventricular Direita , Função Ventricular Direita , Pressão Ventricular
10.
Am J Physiol Lung Cell Mol Physiol ; 308(8): L797-806, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25659904

RESUMO

The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0-4 or 0-10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults.


Assuntos
Hiperóxia/fisiopatologia , Lesão Pulmonar/fisiopatologia , Animais , Animais Recém-Nascidos , Hipóxia Celular , Feminino , Hiperóxia/complicações , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Lesão Pulmonar/etiologia , Masculino , Ratos Sprague-Dawley , Remodelação Ventricular
11.
Exp Physiol ; 100(6): 742-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25867528

RESUMO

NEW FINDINGS: What is the central question of this study? The acute effect of exercise at moderately high intensity on already-elevated pulmonary arterial pressures and right ventricular wall stress in a rat model of pulmonary arterial hypertension (PAH) is unknown. What is the main finding and its importance? We show, for the first time, that in a rat model of PAH, exercise induces an acute reduction in pulmonary artery pressure associated with lung endothelial nitric oxide synthase activation, without evidence of acute right ventricular inflammation or myocyte apoptosis. Haemodynamic measures obtained with traditional invasive methodology as well as novel implantable telemetry reveal an exercise-induced 'window' of pulmonary hypertension alleviation, supporting future investigations of individualized exercise as therapy in PAH. Exercise improves outcomes of multiple chronic conditions, but controversial results, including increased pulmonary artery (PA) pressure, have prevented its routine implementation in pulmonary arterial hypertension (PAH), an incurable disease that drastically reduces exercise tolerance. Individualized, optimized exercise prescription for PAH requires a better understanding of disease-specific exercise responses. We investigated the acute impact of exercise on already-elevated PA pressure and right ventricular (RV) wall stress and inflammation in a rat model of PAH (PAH group, n = 12) induced once by monocrotaline (50 mg kg(-1) , i.p.; 2 weeks), compared with healthy control animals (n = 8). Single bouts of exercise consisted of a 45 min treadmill run at 75% of individually determined aerobic capacity (V̇O2max). Immediately after exercise, measurements of RV systolic pressure and systemic pressure were made via jugular and carotid cannulation, and were followed by tissue collection. Monocrotaline induced moderate PAH, evidenced by RV hypertrophy, decreased V̇O2max, PA muscularization, and RV and skeletal muscle cytoplasmic glycolysis detected by increased expression of glucose transporter-1. Acute exercise normalized the monocrotaline-induced elevation in RV systolic pressure and augmented pulmonary endothelial nitric oxide synthase activation, without evidence of increased RV inflammation or apoptosis. Real-time recordings of pulmonary and systemic pressures during and after single bouts of exercise made using novel implantable telemetry in the same animal for up to 11 weeks after monocrotaline (40 mg kg(-1) ) corroborated the finding of acute PA pressure decreases with exercise in PAH. The PA pressure-lowering effects of individualized exercise associated with RV-neutral effects and increases in vasorelaxor signalling encourage further development of optimized exercise regimens as adjunctive PAH therapy.


Assuntos
Monitorização Ambulatorial da Pressão Arterial/métodos , Terapia por Exercício , Hemodinâmica , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/terapia , Artéria Pulmonar/fisiopatologia , Telemetria/métodos , Animais , Pressão Arterial , Modelos Animais de Doenças , Ativação Enzimática , Glicólise , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Cinética , Masculino , Monocrotalina , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Valor Preditivo dos Testes , Artéria Pulmonar/metabolismo , Ratos Sprague-Dawley , Função Ventricular Direita , Pressão Ventricular
12.
Am J Respir Crit Care Med ; 185(9): 965-80, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22383500

RESUMO

RATIONALE: 17ß-Estradiol (E2) attenuates hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension (HPH) through an unknown mechanism that may involve estrogen receptors (ER) or E2 conversion to catecholestradiols and methoxyestradiols with previously unrecognized effects on cardiopulmonary vascular remodeling. OBJECTIVES: To determine the mechanism by which E2 exerts protective effects in HPH. METHODS: Male rats were exposed to hypobaric hypoxia while treated with E2 (75 µg/kg/d) or vehicle. Subgroups were cotreated with pharmacologic ER-antagonist or with inhibitors of E2-metabolite conversion. Complementary studies were performed in rats cotreated with selective ERα- or ERß-antagonist. Hemodynamic and pulmonary artery (PA) and right ventricular (RV) remodeling parameters, including cell proliferation, cell cycle, and autophagy, were measured in vivo and in cultured primary rat PA endothelial cells. MEASUREMENTS AND MAIN RESULTS: E2 significantly attenuated HPH endpoints. Hypoxia increased ERß but not ERα lung vascular expression. Co-treatment with nonselective ER inhibitor or ERα-specific antagonist rendered hypoxic animals resistant to the beneficial effects of E2 on cardiopulmonary hemodynamics, whereas ERα- and ERß-specific antagonists opposed the remodeling effects of E2. In contrast, inhibition of E2-metabolite conversion did not abolish E2 protection. E2-treated hypoxic animals exhibited reduced ERK1/2 activation and increased expression of cell-cycle inhibitor p27(Kip1) in lungs and RV, with up-regulation of lung autophagy. E2-induced signaling was recapitulated in hypoxic but not normoxic endothelial cells, and was associated with decreased vascular endothelial growth factor secretion and cell proliferation. CONCLUSIONS: E2 attenuates hemodynamic and remodeling parameters in HPH in an ER-dependent manner, through direct antiproliferative mechanisms on vascular cells, which may provide novel nonhormonal therapeutic targets for HPH.


Assuntos
Estradiol/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/complicações , Receptores de Estrogênio/efeitos dos fármacos , Remodelação das Vias Aéreas/efeitos dos fármacos , Remodelação das Vias Aéreas/fisiologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Débito Cardíaco/efeitos dos fármacos , Débito Cardíaco/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/fisiologia , Estradiol/análogos & derivados , Estradiol/uso terapêutico , Antagonistas de Estrogênios/farmacologia , Fulvestranto , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/tratamento farmacológico , Hipóxia/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/fisiopatologia , Masculino , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/fisiologia , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/fisiologia
13.
Mol Med ; 18: 445-54, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22245800

RESUMO

α-1 Antitrypsin (A1AT) is a serpin with a major protective effect against cigarette smoke-induced emphysema development, and patients with mutations of the A1AT gene display a markedly increased risk for developing emphysema. We reported that A1AT protects lung endothelial cells from apoptosis and inhibits caspase-3 activity. It is not clear if cigarette smoking or A1AT mutations alter the caspase-3 inhibitory activity of A1AT and if this serpin alters the function of other caspases. We tested the hypothesis that the caspase-3 inhibitory activity of A1AT is impaired by cigarette smoking and that the A1AT RCL, the key antiprotease domain of the serpin, is required for its interaction with the caspase. We examined the caspase-3 inhibitory activity of human A1AT purified from plasma of actively smoking and nonsmoking individuals, either affected or unaffected with chronic obstructive pulmonary disease. We also tested the caspase inhibitory activity of two mutant forms of A1AT, the recombinant human piZZ and the RCL-deleted (RCL-null) A1AT forms. A1AT purified from the blood of active smokers exhibited marked attenuation in its caspase-3 inhibitory activity, independent of disease status. In vitro exposure of the normal (MM) form of A1AT to cigarette smoke extract reduced its ability to interact with caspase-3, measured by isothermal titration calorimetry, as did the deletion of the RCL, but not the ZZ point mutation. In cell-free assays A1AT was capable of inhibiting all executioner caspases, -3, -7 and especially -6, but not the initiator or inflammatory caspases. The inhibitory effect of A1AT against caspase-6 was tested in vivo, where overexpression of both human MM and ZZ-A1AT via adeno-associated virus transduction significantly protected against apoptosis and against airspace damage induced by intratracheal instillation of caspase-6 in mice. These data indicate a specific inhibitory effect of A1AT on executioner caspases, which is profoundly attenuated by active exposure to cigarette smoking and is dependent on the protein RCL, but is not affected by the PiZZ mutation.


Assuntos
Caspase 3/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/metabolismo , Deficiência de alfa 1-Antitripsina/metabolismo , Adulto , Idoso , Animais , Caspase 6/farmacologia , Caspase 7/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
14.
Am J Pathol ; 179(1): 75-82, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21703395

RESUMO

Intravital microscopy has been recognized for its ability to make physiological measurements at cellular and subcellular levels while maintaining the complex natural microenvironment. Two-photon microscopy (TPM), using longer wavelengths than single-photon excitation, has extended intravital imaging deeper into tissues, with minimal phototoxicity. However, due to a relatively slow acquisition rate, TPM is especially sensitive to motion artifact, which presents a challenge when imaging tissues subject to respiratory and cardiac movement. Thoracoabdominal organs that cannot be exteriorized or immobilized during TPM have generally required the use of isolated, pump-perfused preparations. However, this approach entails significant alteration of normal physiology, such as a lack of neural inputs, increased vascular resistance, and leukocyte activation. We adapted techniques of intravital microscopy that permitted TPM of organs maintained within the thoracoabdominal cavity of living, breathing rats or mice. We obtained extended intravital TPM imaging of the intact lung, arguably the organ most susceptible to both respiratory and cardiac motion. Intravital TPM detected the development of lung microvascular endothelial activation manifested as increased leukocyte adhesion and plasma extravasation in response to oxidative stress inducers PMA or soluble cigarette smoke extract. The pulmonary microvasculature and alveoli in the intact animal were imaged with comparable detail and fidelity to those in pump-perfused animals, opening the possibility for TPM of other thoracoabdominal organs under physiological and pathophysiological conditions.


Assuntos
Movimento Celular , Diagnóstico por Imagem , Endotélio Vascular/ultraestrutura , Coração/fisiologia , Pulmão/ultraestrutura , Fótons , Tórax/ultraestrutura , Animais , Carcinógenos/toxicidade , Adesão Celular , Células Cultivadas , Endotélio Vascular/citologia , Coração/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Pulmão/citologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Perfusão , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/ultraestrutura , Ratos , Ratos Sprague-Dawley , Fumar/efeitos adversos , Acetato de Tetradecanoilforbol/toxicidade , Tórax/citologia
15.
Am J Respir Crit Care Med ; 183(2): 215-25, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20709815

RESUMO

RATIONALE: Adipose-derived stem cells express multiple growth factors that inhibit endothelial cell apoptosis, and demonstrate substantial pulmonary trapping after intravascular delivery. OBJECTIVES: We hypothesized that adipose stem cells would ameliorate chronic lung injury associated with endothelial cell apoptosis, such as that occurring in emphysema. METHODS: Therapeutic effects of systemically delivered human or mouse adult adipose stem cells were evaluated in murine models of emphysema induced by chronic exposure to cigarette smoke or by inhibition of vascular endothelial growth factor receptors. MEASUREMENTS AND MAIN RESULTS: Adipose stem cells were detectable in the parenchyma and large airways of lungs up to 21 days after injection. Adipose stem cell treatment was associated with reduced inflammatory infiltration in response to cigarette smoke exposure, and markedly decreased lung cell death and airspace enlargement in both models of emphysema. Remarkably, therapeutic results of adipose stem cells extended beyond lung protection by rescuing the suppressive effects of cigarette smoke on bone marrow hematopoietic progenitor cell function, and by restoring weight loss sustained by mice during cigarette smoke exposure. Pulmonary vascular protective effects of adipose stem cells were recapitulated by application of cell-free conditioned medium, which improved lung endothelial cell repair and recovery in a wound injury repair model and antagonized effects of cigarette smoke in vitro. CONCLUSIONS: These results suggest a useful therapeutic effect of adipose stem cells on both lung and systemic injury induced by cigarette smoke, and implicate a lung vascular protective function of adipose stem cell derived paracrine factors.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Adultas/transplante , Lesão Pulmonar/terapia , Enfisema Pulmonar/terapia , Fumar/efeitos adversos , Transplante de Células-Tronco/métodos , Tecido Adiposo/transplante , Animais , Apoptose , Western Blotting , Técnicas de Cultura de Células , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Lesão Pulmonar/etiologia , Lesão Pulmonar/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/fisiopatologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/fisiopatologia , Transplante Heterólogo/métodos , Transplante Homólogo/métodos , Redução de Peso
16.
Physiol Rep ; 10(1): e15156, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001565

RESUMO

Acute pulmonary embolism (PE) does not always resolve after treatment and can progress to chronic thromboembolic disease (CTED) or the more severe chronic thromboembolic pulmonary hypertension (CTEPH). The mechanisms surrounding the likelihood of PE resolution or progress to CTED/CTEPH remain largely unknown. We have developed a rat model of CTEPH that closely resembles the human disease in terms of hemodynamics and cardiac manifestations. Embolization of rats with polystyrene microspheres followed by suppression of angiogenesis with the inhibitor of vascular endothelial growth factor receptor 2 (VEGF-R2) SU5416 results in transient, acute pulmonary hypertension that progresses into chronic PE with PH with sustained right ventricular systolic pressures exceeding 70 mmHg (chronic pulmonary embolism [CPE] model). This model is similar to the widely utilized hypoxia/SU5416 model with the exception that the "first hit" is PE. Rats with CPE have impaired right heart function characterized by reduced VO2 Max, reduced cardiac output, and increased Fulton index. None of these metrics are adversely affected by PE alone. Contrast-mediated CT imaging of lungs from rats with PE minus SU5416 show large increases in pulmonary vascular volume, presumably due to an angiogenic response to acute PE/PH. Co-treatment with SU5416 suppresses angiogenesis and produces the CTEPH-like phenotype. We report here that treatment of CPE rats with agonists for soluble guanylate cyclase, a source of cGMP which is in turn a signal for angiogenesis, markedly increases angiogenesis in lungs, and ameliorates the cardiac deficiencies in the CPE model. These results have implications for future development of therapies for human CTEPH.


Assuntos
Hipertensão Pulmonar , Embolia Pulmonar , Animais , Doença Crônica , Hemodinâmica , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Embolia Pulmonar/complicações , Ratos , Guanilil Ciclase Solúvel , Fator A de Crescimento do Endotélio Vascular
17.
J Immunol ; 181(8): 5738-47, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18832733

RESUMO

Primary graft dysfunction (PGD) is a major complication following lung transplantation. We reported that anti-type V collagen (col(V)) T cell immunity was strongly associated with PGD. However, the role of preformed anti-col(V) Abs and their potential target in PGD are unknown. Col(V) immune serum, purified IgG or B cells from col(V) immune rats were transferred to WKY rat lung isograft recipients followed by assessments of lung pathology, cytokines, and PaO(2)/FiO(2), an index of lung dysfunction in PGD. Immune serum, purified IgG, and B cells all induced pathology consistent with PGD within 4 days posttransfer; up-regulated IFN-gamma, TNF-alpha, and IL-1beta locally; and induced significant reductions in PaO(2)/FiO(2). Depleting anti-col(V) Abs before transfer demonstrated that IgG2c was a major subtype mediating injury. Confocal microscopy revealed strong apical col(V) expression on lung epithelial, but not endothelial cells; which was consistent with the ability of col(V) immune serum to induce complement-dependent cytotoxicity only in the epithelial cells. Examination of plasma from patients with or without PGD revealed that higher levels of preformed anti-col(V) Abs were strongly associated with PGD development. This study demonstrates a major role for anti-col(V) humoral immunity in PGD, and identifies the airway epithelium as a target in PGD.


Assuntos
Formação de Anticorpos/imunologia , Autoanticorpos/imunologia , Colágeno Tipo V/imunologia , Imunoglobulina G/imunologia , Transplante de Pulmão , Pulmão/imunologia , Animais , Autoanticorpos/sangue , Autoanticorpos/farmacologia , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos B/transplante , Bovinos , Citocinas/imunologia , Células Endoteliais , Regulação da Expressão Gênica/imunologia , Pulmão/patologia , Transplante de Pulmão/patologia , Ratos , Ratos Endogâmicos WKY , Transplante Isogênico
19.
Transpl Immunol ; 56: 101224, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325493

RESUMO

BACKGROUND: Primary graft dysfunction (PGD) is the leading cause of early mortality after lung transplantation. Anti-collagen type-V (col(V)) immunity has been observed in animal models of ischemia-reperfusion injury (IRI) and in PGD. We hypothesized that collagen type-V is an innate danger signal contributing to PGD pathogenesis. METHODS: Anti-col(V) antibody production was detected by flow cytometric assay following cultures of murine CD19+ splenic cells with col.(V). Responding murine B cells were phenotyped using surface markers. RNA-Seq analysis was performed on murine CD19+ cells. Levels of anti-col(V) antibodies were measured in 188 recipients from the Lung Transplant Outcomes Group (LTOG) after transplantation. RESULTS: Col(V) induced rapid production of anti-col(V) antibodies from murine CD19+ B cells. Subtype analysis demonstrated innate B-1 B cells bound col.(V). Col(V) induced a specific transcriptional signature in CD19+ B cells with similarities to, yet distinct from, B cell receptor (BCR) stimulation. Rapid de novo production of anti-col(V) Abs was associated with an increased incidence of clinical PGD after lung transplant. CONCLUSIONS: This study demonstrated that col.(V) is an rapidly recognized by B cells and has specific transcriptional signature. In lung transplants recipients the rapid seroconversion to anti-col(V) Ab is linked to increased risk of grade 3 PGD.


Assuntos
Subpopulações de Linfócitos B/fisiologia , Colágeno Tipo V/imunologia , Rejeição de Enxerto/imunologia , Transplante de Pulmão , Adulto , Idoso , Animais , Formação de Anticorpos , Antígenos CD19/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transcriptoma
20.
Transplantation ; 85(3): 417-26, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18322435

RESUMO

BACKGROUND: Immunity to type V collagen [col(V)] contributes to lung transplant rejection. Matrix metalloproteases (MMPs), which are induced by transplant-related ischemia-reperfusion injury (IRI), could expose col(V) and regulate local IRI-induced inflammation. METHODS: To test the hypothesis that MMPs induce col(V) exposure and inflammation, Wistar-Kyoto rats were treated with the MMP inhibitor, COL-3, before inducing lung IRI without transplantation, and in parallel studies, Wistar-Kyoto lung donor and recipients were treated with COL-3 pre- and postisograft lung transplantation. RESULTS: Ischemia-reperfusion injury induced growth-related oncogene/CINC-1-dependent neutrophil influx, and up-regulated tumor necrosis factor-alpha. MMP2 and MMP9, induced at 4 and 24 hr after IRI, respectively, were associated with detection of antigenic col(V) in bronchoalveolar lavage and lung interstitium because of MMP-mediated matrix degradation. MMP-inhibitor treatment significantly reduced polymorphonuclear leukocytes, growth-related oncogene/CINC-1, and tumor necrosis factor-alpha; abrogated MMP-9 expression; and resulted in lower levels of antigenic col(V) in bronchoalveolar lavage. In the lung transplant model, inhibiting MMPs in the donor before lung harvest and in the recipient after lung transplantation resulted in improved oxygenation and diminished polymorphonuclear leukocyte influx into the isograft. CONCLUSION: MMP inhibition may be a potential therapy to prevent release of antigenic col(V) and ameliorate IRI in the transplant recipient.


Assuntos
Quimiotaxia de Leucócito , Colágeno Tipo V/metabolismo , Transplante de Pulmão , Metaloproteases/metabolismo , Neutrófilos/citologia , Traumatismo por Reperfusão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Regulação para Baixo , Metaloproteases/antagonistas & inibidores , Proteínas Oncogênicas/metabolismo , Ratos , Ratos Endogâmicos WKY , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA