Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 34(8): 904-921, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33819071

RESUMO

Salt stress is a major agricultural concern inhibiting not only plant growth but also the symbiotic association between legume roots and the soil bacteria rhizobia. This symbiotic association is initiated by a molecular dialogue between the two partners, leading to the activation of a signaling cascade in the legume host and, ultimately, the formation of nitrogen-fixing root nodules. Here, we show that a moderate salt stress increases the responsiveness of early symbiotic genes in Medicago truncatula to its symbiotic partner, Sinorhizobium meliloti while, conversely, inoculation with S. meliloti counteracts salt-regulated gene expression, restoring one-third to control levels. Our analysis of early nodulin 11 (ENOD11) shows that salt-induced expression is dynamic, Nod-factor dependent, and requires the ionic but not the osmotic component of salt. We demonstrate that salt stimulation of rhizobium-induced gene expression requires NSP2, which functions as a node to integrate the abiotic and biotic signals. In addition, our work reveals that inoculation with S. meliloti succinoglycan mutants also hyperinduces ENOD11 expression in the presence or absence of salt, suggesting a possible link between rhizobial exopolysaccharide and the plant response to salt stress. Finally, we identify an accessory set of genes that are induced by rhizobium only under conditions of salt stress and have not been previously identified as being nodulation-related genes. Our data suggest that interplay of core nodulation genes with different accessory sets, specific for different abiotic conditions, functions to establish the symbiosis. Together, our findings reveal a complex and dynamic interaction between plant, microbe, and environment.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Medicago truncatula , Rhizobium , Sinorhizobium meliloti , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Fixação de Nitrogênio , Raízes de Plantas/genética , Rhizobium/genética , Estresse Salino , Sinorhizobium meliloti/genética , Simbiose
2.
J Bacteriol ; 195(16): 3714-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23772067

RESUMO

NodD1, a member of the NodD family of LysR-type transcriptional regulators (LTTRs), mediates nodulation (nod) gene expression in the soil bacterium Sinorhizobium meliloti in response to the plant-secreted flavonoid luteolin. We used genetic screens and targeted approaches to identify NodD1 residues that show altered responses to luteolin during the activation of nod gene transcription. Here we report four types of NodD1 mutants. Type I (NodD1 L69F, S104L, D134N, and M193I mutants) displays reduced or no activation of nod gene expression. Type II (NodD1 K205N) is constitutively active but repressed by luteolin. Type III (NodD1 L280F) demonstrates enhanced activity with luteolin compared to that of wild-type NodD1. Type IV (NodD1 D284N) shows moderate constitutive activity yet can still be induced by luteolin. In the absence of luteolin, many mutants display a low binding affinity for nod gene promoter DNA in vitro. Several mutants also show, as does wild-type NodD1, increased affinity for nod gene promoters with added luteolin. All of the NodD1 mutant proteins can homodimerize and heterodimerize with wild-type NodD1. Based on these data and the crystal structures of several LTTRs, we present a structural model of wild-type NodD1, identifying residues important for inducer binding, protein multimerization, and interaction with RNA polymerase at nod gene promoters.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Luteolina/farmacologia , Sinorhizobium meliloti/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Proteínas de Bactérias , DNA Bacteriano/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Sinorhizobium meliloti/genética , Fatores de Transcrição/genética
3.
J Bacteriol ; 191(22): 6833-42, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749054

RESUMO

The Sinorhizobium meliloti ExoS/ChvI two-component signaling pathway is required for the development of a nitrogen-fixing symbiosis between S. meliloti and its plant hosts. ExoS/ChvI also has important roles in regulating succinoglycan production, biofilm formation, motility, nutrient utilization, and the viability of free-living bacteria. Previous microarray experiments with an exoS96::Tn5 mutant indicated that ExoS/ChvI influences the expression of a few hundred genes, complicating the investigation of which downstream genes respond directly or indirectly to ExoS/ChvI regulation. To focus our study of ExoS/ChvI transcriptional target genes, we performed transcriptional profiling with chvI gain-of-function and reduced-function strains. The chvI gain-of-function strain that we used contains a dominant gain-of-function chvI allele in addition to wild-type chvI. We identified genes that, relative to their expression level in the wild type, are both upregulated in the chvI gain-of-function strain and downregulated in the reduced-function strain or vice versa. Guided by this focused set of genes, we performed gel mobility shift assays and demonstrated that ChvI directly binds the intergenic regions upstream of ropB1, SMb21440, and SMc01580. Furthermore, DNase I footprint analysis of the region upstream of SMc01580 identified a specific DNA sequence bound by ChvI and allowed the discovery of a possible motif for ChvI binding. Our results provide insight into the mechanism of how ExoS/ChvI regulates its downstream targets and lay a foundation for studying this conserved pathway with critical roles in free-living and symbiotic bacteria.


Assuntos
Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Sinorhizobium meliloti/metabolismo , Fatores de Transcrição/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA/metabolismo , Pegada de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Bacteriana da Expressão Gênica/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Sinorhizobium meliloti/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
mSphere ; 3(5)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305320

RESUMO

Bacteria must sense alterations in their environment and respond with changes in function and/or structure in order to cope. Extracytoplasmic function sigma factors (ECF σs) modulate transcription in response to cellular and environmental signals. The symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti carries genes for 11 ECF-like σs (RpoE1 to -E10 and FecI). We hypothesized that some of these play a role in mediating the interaction between the bacterium and its plant symbiotic partner. The bacterium senses changes in its immediate environment as it establishes contact with the plant root, initiates invasion of the plant as the root nodule is formed, traverses several root cell layers, and enters plant cortical cells via endocytosis. We used genetics, transcriptomics, and functionality to characterize the entire S. meliloti cohort of ECF σs. We discovered new targets for individual σs, confirmed others by overexpressing individual ECF σs, and identified or confirmed putative promoter motifs for nine of them. We constructed precise deletions of each ECF σ gene and its demonstrated or putative anti-σ gene and also a strain in which all 11 ECF σ and anti-σ genes were deleted. This all-ECF σ deletion strain showed no major defects in free-living growth, in Biolog Phenotype MicroArray assays, or in response to multiple stresses. None of the ECF σs were required for symbiosis on the host plants Medicago sativa and Medicago truncatula: the strain deleted for all ECF σ and anti-σ genes was symbiotically normal.IMPORTANCE Fixed (reduced) soil nitrogen plays a critical role in soil fertility and successful food growth. Much soil fertility relies on symbiotic nitrogen fixation: the bacterial partner infects the host plant roots and reduces atmospheric dinitrogen in exchange for host metabolic fuel, a process that involves complex interactions between the partners mediated by changes in gene expression in each partner. Here we test the roles of a family of 11 extracytoplasmic function (ECF) gene regulatory proteins (sigma factors [σs]) that interact with RNA polymerase to determine if they play a significant role in establishing a nitrogen-fixing symbiosis or in responding to various stresses, including cell envelope stress. We discovered that symbiotic nitrogen fixation occurs even when all 11 of these regulatory genes are deleted, that most ECF sigma factors control accessory functions, and that none of the ECF sigma factors are required to survive envelope stress.


Assuntos
Proteínas de Bactérias/metabolismo , Fator sigma/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Mutação , Nitrogênio/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Fator sigma/genética , Sinorhizobium meliloti/genética , Simbiose/genética
5.
Mol Microbiol ; 64(3): 647-64, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17462014

RESUMO

Sinorhizobium meliloti enters into a symbiotic relationship with legume host plants, providing fixed nitrogen in exchange for carbon and amino acids. In S. meliloti, exoR and the exoS-chvI two-component system regulate the biosynthesis of succinoglycan, an exopolysaccharide important for host invasion. It was previously reported that a loss-of-function mutation in exoR and a gain-of-function mutation in exoS cause overproduction of succinoglycan and loss of motility, indicating that ExoR negatively regulates and ExoS-ChvI positively regulates downstream genes. However, a relationship between exoR and exoS-chvI has never been clearly established. By identification and detailed characterization of suppressor strains, we provide genetic evidence that exoR and exoS-chvI control many similar phenotypes. These include succinoglycan production, symbiosis, motility, and previously uncharacterized prototrophy and biofilm formation, all of which are co-ordinately restored by suppressors. We further demonstrate that ExoR is located in the periplasm, suggesting that it functions to regulate downstream genes in a novel manner. In pathogenic bacteria closely related to S. meliloti, exoS-chvI homologues are required for virulence and the regulation of cell envelope composition. Our data suggest that periplasmically localized ExoR and ExoS-ChvI function together in a unique and critical regulatory system associated with both free-living and symbiotic states of S. meliloti.


Assuntos
Proteínas de Bactérias/metabolismo , Periplasma/metabolismo , Sinorhizobium meliloti/metabolismo , Fatores de Transcrição/metabolismo , Acetileno/metabolismo , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Cinamatos/farmacologia , Farmacorresistência Bacteriana , Flagelos/metabolismo , Flagelos/ultraestrutura , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Fixação de Nitrogênio , Periplasma/efeitos dos fármacos , Periplasma/ultraestrutura , Fosforilação/efeitos dos fármacos , Polissacarídeos Bacterianos/biossíntese , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/ultraestrutura , Fatores de Transcrição/genética
6.
J Bacteriol ; 188(15): 5417-27, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16855231

RESUMO

NodD1 is a member of the NodD family of LysR-type transcriptional regulators that mediates the expression of nodulation (nod) genes in the soil bacterium Sinorhizobium meliloti. Each species of rhizobia establishes a symbiosis with a limited set of leguminous plants. This host specificity results in part from a NodD-dependent upregulation of nod genes in response to a cocktail of flavonoids in the host plant's root exudates. To demonstrate that NodD is a key determinant of host specificity, we expressed nodD genes from different species of rhizobia in a strain of S. meliloti lacking endogenous NodD activity. We observed that nod gene expression was initiated in response to distinct sets of flavonoid inducers depending on the source of NodD. To better understand the effects of flavonoids on NodD, we assayed the DNA binding activity of S. meliloti NodD1 treated with the flavonoid inducer luteolin. In the presence of luteolin, NodD1 exhibited increased binding to nod gene promoters compared to binding in the absence of luteolin. Surprisingly, although they do not stimulate nod gene expression in S. meliloti, the flavonoids naringenin, eriodictyol, and daidzein also stimulated an increase in the DNA binding affinity of NodD1 to nod gene promoters. In vivo competition assays demonstrate that noninducing flavonoids act as competitive inhibitors of luteolin, suggesting that both inducing and noninducing flavonoids are able to directly bind to NodD1 and mediate conformational changes at nod gene promoters but that only luteolin is capable of promoting the downstream changes necessary for nod gene induction.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flavonoides/fisiologia , Regulação Bacteriana da Expressão Gênica , Sinorhizobium meliloti/metabolismo , Transativadores/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Flavonoides/metabolismo , Flavonoides/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Luteolina/antagonistas & inibidores , Luteolina/metabolismo , Luteolina/farmacologia , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Rhizobiaceae/genética , Especificidade da Espécie , Simbiose/genética , Transativadores/genética , Ativação Transcricional , Regulação para Cima
7.
Proc Natl Acad Sci U S A ; 101(47): 16636-41, 2004 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-15542588

RESUMO

The soil-dwelling alpha-proteobacterium Sinorhizobium meliloti engages in a symbiosis with legumes: S. meliloti elicits the formation of plant root nodules where it converts dinitrogen to ammonia for use by the plant in exchange for plant photosynthate. To study the coordinate differentiation of S. meliloti and its legume partner during nodule development, we designed a custom Affymetrix GeneChip with the complete S. meliloti genome and approximately 10,000 probe sets for the plant host, Medicago truncatula. Expression profiling of free-living S. meliloti grown with the plant signal molecule luteolin in defined minimal and rich media or of strains altered in the expression of key regulatory proteins (NodD1, NodD3, and RpoN) confirms previous data and identifies previously undescribed regulatory targets. Analyses of root nodules show that this Symbiosis Chip allows the study of gene expression in both partners simultaneously. Our studies detail nearly 5,000 transcriptome changes in symbiosis and document complex transcriptional profiles of S. meliloti in different environments.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Simbiose/genética , Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Expressão Gênica/efeitos dos fármacos , Genoma Bacteriano , Genoma de Planta , Luteolina/farmacologia , Medicago truncatula/genética , Medicago truncatula/microbiologia , Mutação , Reação em Cadeia da Polimerase , RNA Polimerase Sigma 54 , Fator sigma/genética , Transdução de Sinais/genética , Sinorhizobium meliloti/genética , Transativadores/genética , Fatores de Transcrição/genética
8.
J Bacteriol ; 184(14): 3808-14, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12081950

RESUMO

Sinorhizobium meliloti, a gram-negative soil bacterium, forms a nitrogen-fixing symbiotic relationship with members of the legume family. To facilitate our studies of transcription in S. meliloti, we cloned and characterized the gene for the alpha subunit of RNA polymerase (RNAP). S. meliloti rpoA encodes a 336-amino-acid, 37-kDa protein. Sequence analysis of the region surrounding rpoA identified six open reading frames that are found in the conserved gene order secY (SecY)-adk (Adk)-rpsM (S13)-rpsK (S11)-rpoA (alpha)-rplQ (L17) found in the alpha-proteobacteria. In vivo, S. meliloti rpoA expressed in Escherichia coli complemented a temperature sensitive mutation in E. coli rpoA, demonstrating that S. meliloti alpha supports RNAP assembly, sequence-specific DNA binding, and interaction with transcriptional activators in the context of E. coli. In vitro, we reconstituted RNAP holoenzyme from S. meliloti alpha and E. coli beta, beta', and sigma subunits. Similar to E. coli RNAP, the hybrid RNAP supported transcription from an E. coli core promoter and responded to both upstream (UP) element- and Fis-dependent transcription activation. We obtained similar results using purified RNAP from S. meliloti. Our results demonstrate that S. meliloti alpha functions are conserved in heterologous host E. coli even though the two alpha subunits are only 51% identical. The ability to utilize E. coli as a heterologous system in which to study the regulation of S. meliloti genes could provide an important tool for our understanding and manipulation of these processes.


Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Escherichia coli/enzimologia , Sinorhizobium meliloti/enzimologia , Ativação Transcricional , Sequência de Aminoácidos , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Dados de Sequência Molecular , Subunidades Proteicas
9.
Proc Natl Acad Sci U S A ; 100(12): 7313-8, 2003 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12775761

RESUMO

Predicted highly expressed (PHX) genes in five currently available high G+C complete alpha-proteobacterial genomes are analyzed. These include: the nitrogen-fixing plant symbionts Sinorhizobium meliloti (SINME) and Mesorhizobium loti (MESLO), the nonpathogenic aquatic bacterium Caulobacter crescentus (CAUCR), the plant pathogen Agrobacterium tumefaciens (AGRTU), and the mammalian pathogen Brucella melitensis (BRUME). Three of these genomes, SINME, AGRTU, and BRUME, contain multiple chromosomes or megaplasmids (>1 Mb length). PHX genes in these genomes are concentrated mainly in the major (largest) chromosome with few PHX genes found in the secondary chromosomes and megaplasmids. Tricarboxylic acid cycle and aerobic respiration genes are strongly PHX in all five genomes, whereas anaerobic pathways of glycolysis and fermentation are mostly not PHX. Only in MESLO (but not SINME) and BRUME are most glycolysis genes PHX. Many flagellar genes are PHX in MESLO and CAUCR, but mostly are not PHX in SINME and AGRTU. The nonmotile BRUME also carries many flagellar genes but these are generally not PHX and all but one are located in the second chromosome. CAUCR stands out among available prokaryotic genomes with 25 PHX TonB-dependent receptors. These are putatively involved in uptake of iron ions and other nonsoluble compounds.


Assuntos
Alphaproteobacteria/genética , Códon/genética , Genoma Bacteriano , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Alphaproteobacteria/metabolismo , Composição de Bases , Brucella melitensis/genética , Brucella melitensis/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Ciclo do Ácido Cítrico/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Metabolismo Energético/genética , Flagelos/genética , Expressão Gênica , Inativação Metabólica/genética , Família Multigênica , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA