Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Biochem ; 539: 144-148, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107579

RESUMO

Monitoring patients with burn wounds for infection is standard practice because failure to rapidly and specifically identify a pathogen can result in poor clinical outcomes, including death. Therefore, a method that facilitates detection and identification of pathogens in situ within minutes of biopsy would be a significant benefit to clinicians. Mass spectrometry is rapidly becoming a standard tool in clinical settings, capable of identifying specific pathogens from complex samples. Imaging mass spectrometry (IMS) expands the information content by enabling spatial resolution of biomarkers in tissue samples as in histology, without the need for specific stains/antibodies. Herein, a murine model of thermal injury was used to study infection of burn tissue by Pseudomonas aeruginosa. This is the first use of IMS to detect P. aeruginosa infection in situ from thermally injured tissue. Multiple molecular features could be spatially resolved to infected or uninfected tissue. This demonstrates the potential use of IMS in a clinical setting to aid doctors in identifying both presence and species of pathogens in tissue.


Assuntos
Biomarcadores/análise , Queimaduras/microbiologia , Pseudomonas aeruginosa/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Queimaduras/complicações , Queimaduras/patologia , Carboximetilcelulose Sódica/química , Modelos Animais de Doenças , Gelatina/química , Camundongos , Imagem Óptica , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/microbiologia
2.
Proc Natl Acad Sci U S A ; 110(7): 2629-34, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23359678

RESUMO

Bacterial biofilm formation is a complex developmental process involving cellular differentiation and the formation of intricate 3D structures. Here we demonstrate that exposure to ferric chloride triggers rugose biofilm formation by the uropathogenic Escherichia coli strain UTI89 and by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium. Two unique and separable cellular populations emerge in iron-triggered, rugose biofilms. Bacteria at the air-biofilm interface express high levels of the biofilm regulator csgD, the cellulose activator adrA, and the curli subunit operon csgBAC. Bacteria in the interior of rugose biofilms express low levels of csgD and undetectable levels of matrix components curli and cellulose. Iron activation of rugose biofilms is linked to oxidative stress. Superoxide generation, either through addition of phenazine methosulfate or by deletion of sodA and sodB, stimulates rugose biofilm formation in the absence of high iron. Additionally, overexpression of Mn-superoxide dismutase, which can mitigate iron-derived reactive oxygen stress, decreases biofilm formation in a WT strain upon iron exposure. Not only does reactive oxygen stress promote rugose biofilm formation, but bacteria in the rugose biofilms display increased resistance to H(2)O(2) toxicity. Altogether, we demonstrate that iron and superoxide stress trigger rugose biofilm formation in UTI89. Rugose biofilm development involves the elaboration of two distinct bacterial populations and increased resistance to oxidative stress.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cloretos/farmacologia , Citrobacter koseri/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Compostos Férricos/farmacologia , Salmonella typhimurium/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Western Blotting , Citrobacter koseri/efeitos dos fármacos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrogênio/metabolismo , Microscopia Confocal , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Transativadores/metabolismo , beta-Galactosidase/metabolismo
3.
Wounds ; 21(9): 229-33, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25903814

RESUMO

  Many modern foam wound dressings possess a variety of attributes that are designed to create a supportive wound-healing environment. These attributes include absorbing exudate, providing optimum moisture balance at the wound surface, and preventing maceration of surrounding tissue. However, studies suggest that controlling wound bioburden should also be targeted when developing wound therapeutics. Thus, traditional foam dressings may absorb a copious amount of fluid, but may also provide an environment where microbes can grow unchallenged, leading to an increase in wound bioburden. However, antimicrobial foam dressings may prevent or reduce microbial growth, increasing the potential for wound healing. Studies reported herein evaluated the efficacy of 0.5% polyhexamethylene biguanide (PHMB) treated dressings to prevent the growth of methicillin-resistant Staphylococcus aureus (MRSA). An antimicrobial foam (Kendall™ AMD, Covidien, Mansfield, MA), which contains PHMB and a standard foam dressing (Copa™, Covidien, Mansfield, MA), which contains no PHMB (control), were directly inoculated with clinical isolate of MRSA and placed on a growth medium for selected time intervals. The presence or absence of microbial growth was quantified using plate counts and was visually assessed using scanning electron microscopy. At all time points, the antimicrobial foam dressing significantly reduced the MRSA growth compared to the control dressing. Similar results were also obtained in the microscopic evaluations. .

4.
Int J Antimicrob Agents ; 46(4): 451-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213381

RESUMO

Due to the emergence of staphylococcal biofilm infections, the need for advanced antibiotics is crucial. The aim of this investigation was to evaluate the potency and penetration of telavancin against staphylococcal biofilms using two different biofilm models. Multiple staphylococcal strains, including meticillin-sensitive Staphylococcus aureus ATCC 29213, vancomycin-intermediate S. aureus ATCC 700787, heterogeneously vancomycin-intermediate S. aureus ATCC 700698 and meticillin-sensitive Staphylococcus epidermidis ATCC 12228, were grown and treated in drip-flow reactors to determine log reductions due to telavancin treatment. After 3 days of biofilm growth and 24 h of treatment, mean log reductions for telavancin ranged from 1.65 to 2.17 depending on the bacterial strain tested. Penetration was evaluated qualitatively using confocal scanning laser microscopy to image the infiltration of fluorescently labelled antibiotic into a staphylococcal biofilm grown in a flow cell. Fluorescently labelled telavancin rapidly penetrated the biofilms with no alteration in the biofilm structure.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Humanos , Lipoglicopeptídeos , Staphylococcus aureus/fisiologia , Staphylococcus epidermidis/fisiologia
5.
Int J Antimicrob Agents ; 33(3): 230-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18977641

RESUMO

The medical impact of bacterial biofilms has increased with the recognition of biofilms as a major contributor to chronic wounds such as diabetic foot ulcers, venous leg ulcers and pressure ulcers. Traditional methods of treatment have proven ineffective, therefore this article presents in vitro evidence to support the use of novel antimicrobials in the treatment of Pseudomonas aeruginosa biofilm. An in vitro biofilm model with a clinical isolate of P. aeruginosa was subjected to treatment with either lactoferrin or xylitol alone or in combination. Combined lactoferrin and xylitol treatment disrupted the structure of the P. aeruginosa biofilm and resulted in a >2log reduction in viability. In situ analysis indicated that while xylitol treatment appeared to disrupt the biofilm structure, lactoferrin treatment resulted in a greater than two-fold increase in the number of permeabilised bacterial cells. The findings presented here indicated that combined treatment with lactoferrin and xylitol significantly decreases the viability of established P. aeruginosa biofilms in vitro and that the antimicrobial mechanism of this treatment includes both biofilm structural disruption and permeablisation of bacterial membranes.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Lactoferrina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Xilitol/farmacologia , Permeabilidade da Membrana Celular , Sinergismo Farmacológico , Humanos , Viabilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA