Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 86(8): 3973-9, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24661185

RESUMO

A novel data reduction and representation method for gas chromatography time-of-flight mass spectrometry (GC-TOFMS) is presented that significantly facilitates separation visualization and analyte peak deconvolution. The method utilizes the rapid mass spectral data collection rate (100 scans/s or greater) of current generation TOFMS detectors. Chromatographic peak maxima (serving as the retention time, tR) above a user specified signal threshold are located, and the chromatographic peak width, W, are determined on a per mass channel (m/z) basis for each analyte peak. The peak W (per m/z) is then plotted against its respective tR (with 10 ms precision) in a two-dimensional (2D) format, producing a cluster of points (i.e., one point per peak W versus tR in the 2D plot). Analysis of GC-TOFMS data by this method produces what is referred to as a two-dimensional mass channel cluster plot (2D m/z cluster plot). We observed that adjacent eluting (even coeluting) peaks in a temperature programmed separation can have their peak W vary as much as ∼10-15%. Hence, the peak W provides useful chemical selectivity when viewed in the 2D m/z cluster plot format. Pairs of overlapped analyte peaks with one-dimensional GC resolution as low as Rs ≈ 0.03 can be visually identified as fully resolved in a 2D m/z cluster plot and readily deconvoluted using chemometrics (i.e., demonstrated using classical least-squares analysis). Using the 2D m/z cluster plot method, the effective peak capacity of one-dimensional GC separations is magnified nearly 40-fold in one-dimensional GC, and potentially ∼100-fold in the context of comparing it to a two-dimensional separation. The method was studied using a 73 component test mixture separated on a 30 m × 250 µm i.d. RTX-5 column with a LECO Pegasus III TOFMS.

2.
Anal Chem ; 83(13): 5190-6, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21627311

RESUMO

For complex sample analysis, there is a need for multidimensional chromatographic instrumentation to be able to separate more compounds, often in shorter time frames. This has led to the development of comprehensive two-dimensional chromatographic instrumentation, such as comprehensive two-dimensional gas chromatography (GC × GC). Lately, much of the focus in this field has been on decreasing peak widths and, therefore, increasing peak capacity and peak capacity production. All of these advancements make it possible to analyze more compounds in a shorter amount of time, but the data still need to remain quantitative to address the needs of most applications. In this report, the relationship among the modulation ratio (M(R)), peak sampling phase (φ), retention time variation (Δt(R)), and how these parameters relate to quantitative analysis precision via the relative standard deviation (RSD) was studied experimentally using a valve-based GC × GC instrument. A wide range of the number of modulations across the first dimension peak width, that is, a M(R) range from ~1 to 10, was examined through maintaining an average first dimension peak width at the base, (1)w(b) of ~3 s and varying the second dimension separation run time from 300 to 2900 ms. An average RSD of 2.1% was experimentally observed at an average M(R) of 2, with a corresponding peak capacity production of ~1200 peaks/min possible. Below this M(R) the RSD quickly increased. In a long-term study of the quantitative precision at a M(R) of 2.5, using 126 replicate injections of a test mixture spanning ~35 h, the RSD averaged 3.0%. The findings have significant implications for optimizing peak capacity production by allowing the use of the longest second dimension run time, while maintaining quantitative precision.

3.
Anal Chim Acta ; 913: 160-70, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26945000

RESUMO

Implementation of a data reduction and visualization method for use with high-speed gas chromatography and time-of-flight mass spectrometry (GC-TOFMS) is reported. The method, called the "2D m/z cluster method" facilitates analyte detection, deconvolution, and identification, by accurately measuring peak widths and retention times using a fast TOFMS sampling frequency (500 Hz). Characteristics and requirements for high speed GC are taken into consideration: fast separations with narrow peak widths and high peak capacity, rapid data collection rate, and effective peak deconvolution. Transitioning from standard GC (10-60+ minute separations) to fast GC (1-10 min separations) required consideration of how to properly analyze the data. This report validates use of the 2D m/z cluster method with newly developed GC technology that produces ultra-fast separations (∼1 min) with narrow analyte peak widths. Low thermal mass gas chromatography (LTM-GC) operated at a heating rate of 250 °C/min coupled to a LECO Pegasus III TOFMS analyzed a 115 component test mixture in 120 s with peak widths-at-base, wb (4σ), of 350 ms (average) to produce a separation with a high peak capacity, nc âˆ¼ 340 (at unit resolution Rs = 1). The 2D m/z cluster method is shown to separate overlapped analytes to a limiting Rs âˆ¼ 0.03, so the effective peak capacity was increased nearly 30-fold to nc ∼10,000 in the 120 s separation. The method, when coupled with LTM-GC-TOFMS, is demonstrated to provide unambiguous peak rank (i.e. the number of analytes per overlapped peak in the total ion current (TIC)), by visualizing locations of pure and chromatographically overlapped m/z. Hence, peak deconvolution and identification using MCR-ALS (multivariate curve resolution - alternating least squares) is demonstrated.

4.
Talanta ; 153: 203-10, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27130110

RESUMO

The chemical composition and several physical properties of RP-1 fuels were studied using comprehensive two-dimensional (2D) gas chromatography (GC×GC) coupled with flame ionization detection (FID). A "reversed column" GC×GC configuration was implemented with a RTX-wax column on the first dimension ((1)D), and a RTX-1 as the second dimension ((2)D). Modulation was achieved using a high temperature diaphragm valve mounted directly in the oven. Using leave-one-out cross-validation (LOOCV), the summed GC×GC-FID signal of three compound-class selective 2D regions (alkanes, cycloalkanes, and aromatics) was regressed against previously measured ASTM derived values for these compound classes, yielding root mean square errors of cross validation (RMSECV) of 0.855, 0.734, and 0.530mass%, respectively. For comparison, using partial least squares (PLS) analysis with LOOCV, the GC×GC-FID signal of the entire 2D separations was regressed against the same ASTM values, yielding a linear trend for the three compound classes (alkanes, cycloalkanes, and aromatics), yielding RMSECV values of 1.52, 2.76, and 0.945 mass%, respectively. Additionally, a more detailed PLS analysis was undertaken of the compounds classes (n-alkanes, iso-alkanes, mono-, di-, and tri-cycloalkanes, and aromatics), and of physical properties previously determined by ASTM methods (such as net heat of combustion, hydrogen content, density, kinematic viscosity, sustained boiling temperature and vapor rise temperature). Results from these PLS studies using the relatively simple to use and inexpensive GC×GC-FID instrumental platform are compared to previously reported results using the GC×GC-TOFMS instrumental platform.

5.
J Chromatogr A ; 1432: 111-21, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26787164

RESUMO

A novel analytical workflow is presented for the analysis of time-dependent (13)C-labeling of the metabolites in the methylotrophic bacterium Methylobacterium extorquens AM1 using gas chromatography time-of-flight mass spectrometry (GC-TOFMS). Using (13)C-methanol as the substrate in a time course experiment, the method provides an accurate determination of the number of carbons converted to the stable isotope. The method also extracts a quantitative isotopic dilution time course profile for (13)C uptake of each metabolite labeled that could in principle be used to obtain metabolic flux rates. The analytical challenges encountered require novel analytical platforms and chemometric techniques. GC-TOFMS offers advanced separation of mixtures, identification of individual components, and high data density for the application of advanced chemometrics. This workflow combines both novel and traditional chemometric techniques, including the recently reported two-dimensional mass cluster plot method (2D m/z cluster plot method) as well as principal component analysis (PCA). The 2D m/z cluster plot method effectively indexed all metabolites present in the sample and deconvoluted metabolites at ultra-low chromatographic resolution (RS≈0.04). Using the pure mass spectra extracted, two PCA models were created. Firstly, PCA was used on the first and last time points of the time course experiment to determine and quantify the extent of (13)C uptake. Secondly, PCA modeled the full time course in order to quantitatively extract the time course profile for each metabolite. The 2D m/z cluster plot method found 152 analytes (metabolites and reagent peaks), with 54 pure analytes, and 98 were convoluted, with 65 of the 98 requiring mathematical deconvolution. Of the 152 analytes surveyed, 83 were metabolites determined by the PCA model to have incorporated (13)C while 69 were determined to be either metabolites or reagent peaks that remained unlabeled.


Assuntos
Metaboloma , Methylobacterium extorquens/metabolismo , Isótopos de Carbono , Cromatografia Gasosa-Espectrometria de Massas/métodos , Análise de Componente Principal
6.
J Chromatogr A ; 1392: 82-90, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25814332

RESUMO

Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 µl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace.


Assuntos
Cromatografia Gasosa/métodos , Alcanos/análise , Cromatografia Gasosa/instrumentação , Temperatura Alta , Microextração em Fase Líquida , Musa/química , Microextração em Fase Sólida , Volatilização
7.
J Chromatogr A ; 1266: 116-23, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23084826

RESUMO

Peak capacity production is substantially improved for two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) and applied to the fast separation of a 28 component liquid test mixture, and two complex vapor samples (a 65 component volatile organic compound test mixture, and the headspace of warm ground coffee beans). A high peak capacity is achieved in a short separation time by selecting appropriate experimental conditions based on theoretical modeling of on-column band broadening, and by reducing the off-column band broadening by applying a narrow, concentrated injection pulse onto the primary column using high-speed cryo-focusing injection (HSCFI), referred to as thermal injection. A long, relatively narrow open tubular capillary column (20 m, 100 µm inner diameter (i.d.) with a 0.4 µm film thickness to benefit column capacity) was used as the primary column. The initial flow rate was 2 ml/min (60 cm/s average linear flow velocity) which is slightly below the optimal average linear gas velocity of 83 cm/s, due to the flow rate constraint of the TOFMS vacuum system. The oven temperature programming rate was 30°C/min. The secondary column (1.8m, 100 µm i.d. with a 0.1 µm film thickness) provided a relatively high peak capacity separation, concurrent with a significantly shorter modulation period, P(M), than commonly applied with the commercial instrument. With this GC×GC-TOFMS instrumental platform, compounds in the 28 component liquid test mixture provided a ∼7 min separation (with a ∼6.5 min separation time window), producing average peak widths of ∼600 ms full width half maximum (FWHM), resulting in a peak capacity on the primary column of ∼400 peaks (at unit resolution). Using a secondary column with a 500 ms P(M), average peak widths of ∼20 ms FWHM were achieved, thus providing a peak capacity of 15 peaks on the second dimension. Overall, an ideal orthogonal GC×GC peak capacity of ∼6000 peaks (at unit resolution) was achieved (or a ß-corrected orthogonal peak capacity of ∼4400, at an average modulation ratio, M(R), of ∼2). This corresponds to an ideal orthogonal peak capacity production of ∼1000 peaks/min (or ∼700 peaks/min, ß-corrected). For comparison, standard split/split-less injection techniques with a 1:100 split, when combined with standard GC×GC conditions typically provide a peak capacity production of ∼100 peaks/min, hence the instrumental platform we report provides a ∼7-fold to 10-fold improvement.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Café/química , Ensaios de Triagem em Larga Escala/métodos , Isomerismo , Modelos Químicos , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Sementes/química
8.
Talanta ; 97: 9-15, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22841041

RESUMO

In order to maximize peak capacity and detection sensitivity of fast gas chromatography (GC) separations, it is necessary to minimize band broadening, and in particular due to injection since this is often a major contributor. A high-speed cryo-focusing injection (HSCFI) system was constructed to first cryogenically focus analyte compounds in a 6 cm long section of metal MXT column, and second, reinject the focused analytes by rapidly resistively heating the metal column via an in-house built electronic circuit. Since the cryogenically cooled section of column is small (∼750 nl) and the direct resistive heating is fast (∼6000 °C/s), HSCFI is demonstrated to produce an analyte peak with a 6.3 ms width at half height, w(1/2). This was achieved using a 1m long column with a 180 µm inner diameter (i.d.) operated at an absolute head pressure of 55 psi and an oven temperature of 60 °C, with a 10 V pulse applied to the metal column for 50 ms. HSCFI was also used to demonstrate the head space sampling and fast GC analysis of an aqueous solution containing six test analytes (acetone, methanol, ethanol, toluene, chlorobenzene, pentanol). Using Henry's law constants for each of the analytes, injected mass limits of detection (LODs) were typically in the low pg levels (e.g., 1.2 pg for acetone) for the high speed separation. Finally, to demonstrate the use of HSCFI with a complex sample, a gasoline was separated using a 20 m × 100 µm i.d. column and the stock GC oven for temperature programming, which provided a separation time of 200 s and an average peak width at the base of 440 ms resulting in a total peak capacity of 460 peaks (at unit resolution).

9.
J Chromatogr A ; 1218(21): 3130-9, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21255787

RESUMO

By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180µm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ∼1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ∼500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width, peak height, and peak area average RSD%'s of 0.006, 0.8, 3.4, and 4.0%, respectively. Modified injection onto the first column of a GC×GC coupled with another high-speed valve injection onto the second column produced an instrument with high peak capacity production (500-800peaks/min), ∼5-fold to 8-fold higher than typically reported for GC×GC.


Assuntos
Cromatografia Gasosa/métodos , Modelos Teóricos , Cromatografia Gasosa/instrumentação , Desenho de Equipamento , Ionização de Chama , Gasolina , Temperatura Alta , Compostos Orgânicos/química , Reprodutibilidade dos Testes
10.
J Chromatogr A ; 1218(23): 3718-24, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21536294

RESUMO

A computational approach to partially address the general elution problem (GEP), and better visualize, isothermal gas chromatograms is reported. The theoretical computational approach is developed and applied experimentally. We report a high speed temporally increasing boxcar summation (TIBS) transform that, when applied to the raw isothermal GC data, converts the chromatographic data from the initial time domain (in which the peak widths in isothermal GC increase as a function of their retention factors, k), to a data point based domain in which all peaks have the same peak width in terms of number of points in the final data vector, which aides in preprocessing and data analysis, while minimizing data storage size. By applying the TIBS transform, the resulting GC chromatogram (initially collected isothermally), appears with an x-axis point scale as if it were instrumentally collected using a suitable temperature program. A high speed GC isothermal separation with a test mixture containing 10 compounds had a run time of ∼25 s. The peak at a retention factor k ∼0.7 had a peak width of ∼55 ms, while the last eluting peak at k ∼89 (i.e., retention time of ∼22 s) had a peak width of ∼2000 ms. Application of the TIBS transform increased the peak height of the last eluting peak 45-fold, and S/N ∼20-fold. All peaks in the transformed test mixture chromatogram had the width of an unretained peak, in terms of number of data points. A simulated chromatogram at unit resolution, studied using the TIBS transform, provided additional insight into the benefits of the algorithm.


Assuntos
Algoritmos , Cromatografia Gasosa/métodos , Processamento de Sinais Assistido por Computador , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA