Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(21): 8291-8299, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38743800

RESUMO

Nanoparticles are produced at accelerating rates, are increasingly integrated into scientific and industrial applications, and are widely discharged into the environment. Analytical techniques are required to characterize parameters such as particle number concentrations, mass and size distributions, molecular and elemental compositions, and particle stability. This is not only relevant to investigate their utility for various industrial or medical applications and for controlling the manufacturing processes but also to assess toxicity and environmental fate. Different analytical strategies aim to characterize certain facets of particles but are difficult to combine to retrieve relevant parameters coherently and to provide a more comprehensive picture. In this work, we demonstrate the first online hyphenation of optofluidic force induction (OF2i) with Raman spectroscopy and inductively coupled plasma-time-of-flight-mass spectrometry (ICP-TOFMS) to harness their complementary technology-specific advantages and to promote comprehensive particle characterizations. We optically trapped individual particles on a weakly focused vortex laser beam by aligning a microfluidic flow antiparallelly to the laser propagation direction. The position of particles in this optical trap depended on the hydrodynamic diameter and therefore enabled size calibration as well as matrix elimination. Additionally, laser light scattered on particles was analyzed in a single particle (SP) Raman spectroscopy setup for the identification of particulate species and phases. Finally, particles were characterized regarding elemental composition and their distributions in mass and size using SP ICP-TOFMS. In a proof of concept, we analyzed polystyrene-based microplastic and TiO2 nanoparticles and demonstrated the opportunities provided through the coupling of OF2i with SP Raman and SP ICP-TOFMS.

2.
Inorg Chem ; 62(38): 15490-15501, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37700615

RESUMO

The aim of this study was the preparation of different amorphous silicon-carbon hybrid thin-layer materials according to the liquid phase deposition (LPD) process using single-source precursors. In our study, 2-methyl-2-silyltrisilane (methylisotetrasilane; 2), 1,1,1-trimethyl-2,2-disilyltrisilane (trimethylsilylisotetrasilane; 3), 2-phenyl-2-silyltrisilane (phenylisotetrasilane; 4), and 1,1,2,2,4,4,5,5-octamethyl-3,3,6,6-tetrasilylcyclohexasilane (cyclohexasilane; 5) were utilized as precursor materials and compared with the parent compound 2,2-disilyltrisilane (neopentasilane; 1). Compounds 2-5 were successfully oligomerized at λ = 365 nm with catalytic amounts of the neopentasilane oligomer (NPO). These oligomeric mixtures (NPO and 6-9) were used for the preparation of thin-layer materials. Optimum solution and spin coating conditions were investigated, and amorphous silicon-carbon films were obtained. All thin-layer materials were characterized via UV/vis spectroscopy, light microscopy, spectroscopic ellipsometry, XPS, SEM, and SEM/EDX. Our results show that the carbon content and especially the bandgap can be easily tuned using these single-source precursors via LPD.

3.
Angew Chem Int Ed Engl ; 56(45): 14071-14074, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28977723

RESUMO

Herein a convenient synthetic method to obtain 2,2,3,3-tetrasilyltetrasilane 3 and 2,2,3,3,4,4-hexasilylpentasilane 4 on a multigram scale is presented. Proton-coupled 29 Si NMR spectroscopy and single-crystal X-ray crystallography enabled unequivocal structural assignment. Owing to their unique properties, which are reflected in their nonpyrophoric character on contact with air and their enhanced light absorption above 250 nm, 3 and 4 are valuable precursors for liquid-phase deposition (LPD) and the processing of thin silicon films. Amorphous silicon (a-Si:H) films of excellent quality were deposited starting from 3 and characterized by conductivity measurements, ellipsometry, optical microscopy, and Raman spectroscopy.

4.
Nanomaterials (Basel) ; 13(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37177090

RESUMO

The charging of nanoporous carbon via electrodeposition of solid iodine from iodide-based electrolyte is an efficient and ecofriendly method to produce battery cathodes. Here, the interactions at the carbon/iodine interface from first contact with the aqueous electrolyte to the electrochemical polarization conditions in a hybrid cell are investigated by a combination of in situ and ex situ methods. EQCM investigations confirm the flushing out of water from the pores during iodine formation at the positive electrode. XPS of the carbon surface shows irreversible oxidation at the initial electrolyte immersion and to a larger extent during the first few charge/discharge cycles. This leads to the creation of functional groups at the surface while further reactive sites are consumed by iodine, causing a kind of passivation during a stable cycling regime. Two sources of carbon electrode structural modifications during iodine formation in the nanopores have been revealed by in situ Raman spectroscopy, (i) charge transfer and (ii) mechanical strain, both causing reversible changes and thus preventing performance deterioration during the long-term cycling of energy storage devices that use iodine-charged carbon electrodes.

5.
Ultramicroscopy ; 240: 113567, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35717685

RESUMO

Correlative microscopy combines data from different microscopical techniques to gain unique insights about specimens. A key requirement to unlocking the full potential is an advanced classification method that can combine the various analytical signals into physically meaningful phases. The prevalence of highly imbalanced class distributions and high intra-class variability in such real applications makes this a difficult task, yet no study of classifier performance exists in the context of correlative microscopy. This paper investigates the application of both single classifiers as well as multiple classifier systems with dynamic selection. The test sample used for evaluation and comparison of the results is a volcanic rock where data from correlative Raman spectroscopy, Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) are available and prepared for algorithmic evaluation. The results show that multiple classifier systems outperform single classifiers reaching an area under the curve of the receiver operating characteristic of 99% demonstrating the applicability of automated classification in correlative microscopy. Thus, this paper contributes by highlighting the potential of combining the research fields of correlative microscopy and machine learning.


Assuntos
Aprendizado de Máquina , Microscopia , Curva ROC
6.
Micron ; 153: 103177, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915271

RESUMO

Whole sample microscopy mappings are of interest in many cases as they provide analytical information of phases varying in size by orders of magnitude and in composition across the sample. These benefits are amplified if more than one microscopic technique is used for the mappings. However, to take full advantage of correlative whole sample mappings, the data of each technique has to be carefully prepared, treated, correlated and evaluated. With this work, we want to present the key steps of our data treatment approach as well as the results on an exemplary sample, the Chelyabinsk meteorite. The most important step in our data treatment approach is to start by evaluating the spectral maps separately as far as possible (at-% quantification for EDS for example) and then generate pseudo spectral maps from this evaluation in the form of image stacks. This allows us to preserve the advantages of specialized software packages and standard work flows for every spectral mapping, whilst also unifying the data format and compressing the data sufficiently for correlation and the application of machine learning tools. We have performed whole sample mappings using SEM, EDS and Raman on a cross-section of a Chelyabinsk meteorite fragment, roughly 1.0cm × 0.8cm large. Combining these mappings into a single "super" spectral map, we were able to produce a uniquely detailed mapping of the composition of the meteorite fragment, as well as perform a quantitative analysis of the elemental composition of several crystallographic phases. The results of our compositional analysis; olivine (Fo72Fa28), pyroxene (≈ 97 % En80Fs20Wo0 and 3 % En56Fs6Wo38), feldspar (albite), troilite, FeNi (taenite and kamacite), merrillite, chromite and hydroxyapatite; agree qualitatively with other reports from literature.


Assuntos
Meteoroides
7.
Micron ; 143: 103029, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33581473

RESUMO

Due to the specific vacuum requirements for scanning electron microscopy (SEM), the Raman microscope has to operate in vacuum in a correlative Raman-SEM, which is a type of microscope combination that has recently increased in popularity. This works considers the implications of conducting Raman microscopy under vacuum, as opposed to operating in ambient air, the standard working regime of this technique. We show that the performance of the optics of the Raman microscope are identical in both conditions, but laser beam-sample interactions, such as fluorescent bleaching and beam damage, might be different due to the lack of oxygen in vacuum. The bleaching of the fluorescent background appears to be mostly unaffected by the lack of oxygen, except when very low laser powers are used. Regarding laser-beam damage, organic samples are more sensitive in vacuum than in air, whereas no definite verdict is possible for inorganic samples. These findings have practical implications for the application of correlative Raman-SEM, as low laser powers, or in extreme cases cryo-methods, need to be used for organic samples that appear only moderately beam sensitive under usual ambient air.

8.
ACS Appl Mater Interfaces ; 13(1): 1178-1191, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372522

RESUMO

The direct-write fabrication of freestanding nanoantennas for plasmonic applications is a challenging task, as demands for overall morphologies, nanoscale features, and material qualities are very high. Within the small pool of capable technologies, three-dimensional (3D) nanoprinting via focused electron beam-induced deposition (FEBID) is a promising candidate due to its design flexibility. As FEBID materials notoriously suffer from high carbon contents, the chemical postgrowth transfer into pure metals is indispensably needed, which can severely harm or even destroy FEBID-based 3D nanoarchitectures. Following this challenge, we first dissect FEBID growth characteristics and then combine individual advantages by an advanced patterning approach. This allows the direct-write fabrication of high-fidelity shapes with nanoscale features in the sub-10 nm range, which allow a shape-stable chemical transfer into plasmonically active Au nanoantennas. The here-introduced strategy is a generic approach toward more complex 3D architectures for future applications in the field of 3D plasmonics.

9.
Micron ; 144: 103034, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621743

RESUMO

Nowadays "microplastics" (MPs) is an already well-known term and results of micro-sized particles found in consumer products or environments are regularly reported. However, studies of native MPs smaller than 1 µm, often referred to as nanoplastics (NPs), in analytically challenging environments are rare. In this study, a correlative approach between scanning electron microscopy and Raman microscopy is tested to meet the challenges of finding and identifying NPs in the 100 nm range in various environments, ranging from ideal (distilled water) to challenging (sea salt, human amniotic fluid). To test the viability of this approach in principle, standardized polystyrene beads (Ø 200 nm) are mixed into the various environments in different concentrations. Promising detection limits of 2 10-3 µg/L (distilled water), 20 µg/L (sea salt) and 200 µg/L (human amniotic fluid) are found. To test the approach in practices both sea salt and amniotic fluid are analysed for native NPs as well. Interestingly a nylon-NP was found in the amniotic fluid, maybe originating from the sampling device. However, the practical test reveals limitations, especially with regard to the reliable identification of unknown NPs by Raman microscopy, due to strong background signals from the environments. We conclude from this in combination with the excellent performance in distilled water that a combination of this approach with an advanced sample preparation technique would yield a powerful tool for the analysis of NPs in various environments.


Assuntos
Poluentes Ambientais/análise , Microplásticos/análise , Microscopia Eletrônica de Varredura/métodos , Microscopia Óptica não Linear/métodos , Líquido Amniótico/química , Limite de Detecção , Água do Mar/química
10.
ACS Appl Mater Interfaces ; 12(17): 19855-19865, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32249561

RESUMO

The conversion of various polymer substrates into laser-induced graphene (LIG) with a CO2 laser in ambient condition is recently emerging as a simple method for obtaining patterned porous graphene conductors, with a myriad of applications in sensing, actuation, and energy. In this paper, a method is presented for embedding porous LIG (LIG-P) or LIG fibers (LIG-F) into a thin (about 50 µm) and soft medical grade polyurethane (MPU) providing excellent conformal adhesion on skin, stretchability, and maximum breathability to boost the development of various unperceivable monitoring systems on skin. The effect of varying laser fluence and geometry of the laser scribing on the LIG micro-nanostructure morphology and on the electrical and electromechanical properties of LIG/MPU composites is investigated. A peculiar and distinct behavior is observed for either LIG-P or LIG-F. Excellent stretchability without permanent impairment of conductive properties is revealed up to 100% strain and retained after hundreds of cycles of stretching tests. A distinct piezoresistive behavior, with an average gauge factor of 40, opens the way to various potential strain/pressure sensing applications. A novel method based on laser scribing is then introduced for providing vertical interconnect access (VIA) into LIG/MPU conformable epidermal sensors. Such VIA enables stable connections to an external measurement device, as this represents a typical weakness of many epidermal devices so far. Three examples of minimally invasive LIG/MPU epidermal sensing proof of concepts are presented: as electrodes for electromyographic recording on limb and as piezoresistive sensors for touch and respiration detection on skin. Long-term wearability and functioning up to several days and under repeated stretching tests is demonstrated.

11.
Nat Commun ; 11(1): 4838, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973214

RESUMO

Aqueous iodine based electrochemical energy storage is considered a potential candidate to improve sustainability and performance of current battery and supercapacitor technology. It harnesses the redox activity of iodide, iodine, and polyiodide species in the confined geometry of nanoporous carbon electrodes. However, current descriptions of the electrochemical reaction mechanism to interconvert these species are elusive. Here we show that electrochemical oxidation of iodide in nanoporous carbons forms persistent solid iodine deposits. Confinement slows down dissolution into triiodide and pentaiodide, responsible for otherwise significant self-discharge via shuttling. The main tools for these insights are in situ Raman spectroscopy and in situ small and wide-angle X-ray scattering (in situ SAXS/WAXS). In situ Raman confirms the reversible formation of triiodide and pentaiodide. In situ SAXS/WAXS indicates remarkable amounts of solid iodine deposited in the carbon nanopores. Combined with stochastic modeling, in situ SAXS allows quantifying the solid iodine volume fraction and visualizing the iodine structure on 3D lattice models at the sub-nanometer scale. Based on the derived mechanism, we demonstrate strategies for improved iodine pore filling capacity and prevention of self-discharge, applicable to hybrid supercapacitors and batteries.

12.
Nat Commun ; 11(1): 5742, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159089

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nanomaterials (Basel) ; 9(10)2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623401

RESUMO

Hybrid electrochemical capacitors have emerged as attractive energy storage option, which perfectly fill the gap between electric double-layer capacitors (EDLCs) and batteries, combining in one device the high power of the former and the high energy of the latter. We show that the charging characteristics of the positive carbon electrode are transformed to behave like a battery operating at nearly constant potential after it is polarized in aqueous iodide electrolyte (1 mol L-1 NaI). Thermogravimetric analysis of the positive carbon electrode confirms the decomposition of iodides trapped inside the carbon pores in a wide temperature range from 190 °C to 425 °C, while Raman spectra of the positive electrode show characteristic peaks of I3- and I5- at 110 and 160 cm-1, respectively. After entrapment of polyiodides in the carbon pores by polarization in 1 mol L-1 NaI, the positive electrode retains the battery-like behavior in another cell, where it is coupled with a carbon-based negative electrode in aqueous NaNO3 electrolyte without any redox species. This new cell (the iodide-ion capacitor) demonstrates the charging characteristics of a hybrid capacitor with capacitance values comparable to the one using 1 mol L-1 NaI. The constant capacitance profile of the new hybrid cell in aqueous NaNO3 for 5000 galvanostatic charge/discharge cycles at 0.5 A g-1 shows that iodide species are confined to the positive battery-like electrode exhibiting negligible potential decay during self-discharge tests, and their shuttling to the negative electrode is prevented in this system.

14.
ACS Appl Mater Interfaces ; 10(12): 10102-10114, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29488376

RESUMO

After organic photovoltaic (OPV) cells achieved efficiency of more than 10%, the control of stability and degradation mechanisms of solar cells became a prominent task. The increase of device efficiency due to incorporation of a hole-transport layer (HTL) in bulk-heterojunction solar cells has been extensively reported. However, the most widely used HTL material, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), is frequently suspected to be the dominating source for device instability under environmental conditions. Thereby, effects like photooxidation and electrode corrosion are often reported to shorten device lifetime. However, often in environmental device studies, the source of degradation, whether being from the HTL, the active layer, or the metal cathode is rather difficult to distinguish because the external diffusion of oxygen and water affects all components. In this study, different HTLs, namely, those prepared from traditional PEDOT:PSS and also two types of molybdenum trioxide (MoO3) are exposed to different environments, such as oxygen, light, or humidity, prior to device finalization under inert conditions. This allows investigating any effects within the HTL and from reactions at its interface to the indium tin oxide electrode or the active layer. The surface and bulk chemistry of the exposed HTL has been monitored and discussed in context to the observed device physics, dynamic charge transport, and spatial performance homogeneity of the corresponding OPV device. The results show that merely humidity exposure of the HTL leads to decreased device performance for PEDOT:PSS, but also for one type of the tested MoO3. The losses are related to the amount of absorbed water in the HTL, inducing loss of active area in terms of interfacial contact. The device with PEDOT:PSS HTL after humid air exposure showed seriously decreased photocurrent by microdelamination of swelling/shrinkage of the hygroscopic layer. The colloidal MoO3 with water-based precursor solution presents slight decay of solar cell performance, also here caused by swelling/shrinking reaction, but by a combination of in-plane particle contact and resistance scaling with particle expansion. However, the device with quasi-continuous and alcohol-based MoO3 showed unharmed stable electrical performance.

16.
ACS Appl Mater Interfaces ; 7(50): 27900-9, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26618709

RESUMO

In the field of enzymatic cellulose degradation, fundamental interactions between different enzymes and polymorphic cellulose materials are of essential importance but still not understood in full detail. One technology with the potential of direct visualization of such bioprocesses is atomic force microscopy (AFM) due to its capability of real-time in situ investigations with spatial resolutions down to the molecular scale. To exploit the full capabilities of this technology and unravel fundamental enzyme-cellulose bioprocesses, appropriate cellulose substrates are decisive. In this study, we introduce a semicrystalline-thin-film-cellulose (SCFTC) substrate which fulfills the strong demands on such ideal cellulose substrates by means of (1) tunable polymorphism via variable contents of homogeneously sized cellulose nanocrystals embedded in an amorphous cellulose matrix; (2) nanoflat surface topology for high-resolution and high-speed AFM; and (3) fast, simple, and reproducible fabrication. The study starts with a detailed description of SCTFC preparation protocols including an in-depth material characterization. In the second part, we demonstrate the suitability of SCTFC substrates for enzymatic degradation studies by combined, individual, and sequential exposure to TrCel6A/TrCel7A cellulases (Trichoderma reesei) to visualize synergistic effects down to the nanoscale.


Assuntos
Celulases/química , Celulose/química , Microscopia de Força Atômica , Celulases/metabolismo , Celulose/ultraestrutura , Hidrólise , Cinética , Especificidade por Substrato , Trichoderma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA