Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1644, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388474

RESUMO

Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for 'Tail assembly blocker'), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.


Assuntos
Bacteriófagos , Infecções por Pseudomonas , Humanos , Bacteriófagos/genética , Prófagos/genética , Infecções por Pseudomonas/microbiologia , Vírion/genética
2.
mBio ; 13(1): e0244121, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038902

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.


Assuntos
Inovirus , Superinfecção , Humanos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/metabolismo , Inovirus/metabolismo , Fímbrias Bacterianas/genética
3.
Adv Virus Res ; 103: 1-31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30635074

RESUMO

The viruses that infect bacteria, known as phages, are the most abundant biological entity on earth. They play critical roles in controlling bacterial populations through phage-mediated killing, as well as through formation of bacterial lysogens. In this form, the survival of the phage depends on the survival of the bacterial host in which it resides. Thus, it is advantageous for phages to encode genes that contribute to bacterial fitness and expand the environmental niche. In many cases, these fitness factors also make the bacteria better able to survive in human infections and are thereby considered pathogenesis or virulence factors. The genes that encode these fitness factors, known as "morons," have been shown to increase bacterial fitness through a wide range of mechanisms and play important roles in bacterial diseases. This review outlines the benefits provided by phage morons in various aspects of bacterial life, including phage and antibiotic resistance, motility, adhesion and quorum sensing.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Farmacorresistência Bacteriana/genética , Terapia por Fagos/métodos , Prófagos/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/patogenicidade , Aderência Bacteriana , Fenômenos Fisiológicos Bacterianos , Toxinas Bacterianas/genética , Sistemas CRISPR-Cas , Interações Hospedeiro-Patógeno , Humanos , Lisogenia , Percepção de Quorum/fisiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA