Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 53(6): 1215-1229.e8, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33220234

RESUMO

Inflammation can support or restrain cancer progression and the response to therapy. Here, we searched for primary regulators of cancer-inhibitory inflammation through deep profiling of inflammatory tumor microenvironments (TMEs) linked to immune-dependent control in mice. We found that early intratumoral accumulation of interferon gamma (IFN-γ)-producing natural killer (NK) cells induced a profound remodeling of the TME and unleashed cytotoxic T cell (CTL)-mediated tumor eradication. Mechanistically, tumor-derived prostaglandin E2 (PGE2) acted selectively on EP2 and EP4 receptors on NK cells, hampered the TME switch, and enabled immune evasion. Analysis of patient datasets across human cancers revealed distinct inflammatory TME phenotypes resembling those associated with cancer immune control versus escape in mice. This allowed us to generate a gene-expression signature that integrated opposing inflammatory factors and predicted patient survival and response to immune checkpoint blockade. Our findings identify features of the tumor inflammatory milieu associated with immune control of cancer and establish a strategy to predict immunotherapy outcomes.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Inflamação/imunologia , Neoplasias/imunologia , Evasão Tumoral/imunologia , Animais , Dinoprostona/metabolismo , Humanos , Imunoterapia , Inflamação/genética , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Camundongos , Neoplasias/terapia , Fenótipo , Prognóstico , Prostaglandina-Endoperóxido Sintases/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Linfócitos T Citotóxicos/imunologia , Microambiente Tumoral/imunologia
2.
Nat Commun ; 13(1): 2063, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440553

RESUMO

Cytotoxic therapies, besides directly inducing cancer cell death, can stimulate immune-dependent tumor growth control or paradoxically accelerate tumor progression. The underlying mechanisms dictating these opposing outcomes are poorly defined. Here, we show that cytotoxic therapy acutely upregulates cyclooxygenase (COX)-2 expression and prostaglandin E2 (PGE2) production in cancer cells with pre-existing COX-2 activity. Screening a compound library of 1280 approved drugs, we find that all classes of chemotherapy drugs enhance COX-2 transcription whilst arresting cancer cell proliferation. Genetic manipulation of COX-2 expression or its gene promoter region uncover how augmented COX-2/PGE2 activity post-treatment profoundly alters the inflammatory properties of chemotherapy-treated cancer cells in vivo. Pharmacological COX-2 inhibition boosts the efficacy of the combination of chemotherapy and PD-1 blockade. Crucially, in a poorly immunogenic breast cancer model, only the triple therapy unleashes tumor growth control and significantly reduces relapse and spontaneous metastatic spread in an adjuvant setting. Our findings suggest COX-2/PGE2 upregulation by dying cancer cells acts as a major barrier to cytotoxic therapy-driven tumor immunity and uncover a strategy to improve the outcomes of immunotherapy and chemotherapy combinations.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Imunoterapia , Regulação para Cima
3.
Cancer Res Commun ; 2(9): 914-928, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36922934

RESUMO

Wnt signaling is implicated in the etiology of gastrointestinal tract cancers. Targeting Wnt signaling is challenging due to on-target toxicity concerns and lack of druggable pathway components. We describe the discovery and characterization of RXC004, a potent and selective inhibitor of the membrane-bound o-acyl transferase Porcupine, essential for Wnt ligand secretion. Absorption, distribution, metabolism, and excretion and safety pharmacology studies were conducted with RXC004 in vitro, and pharmacokinetic exposure assessed in vivo. RXC004 effects on proliferation and tumor metabolism were explored in genetically defined colorectal and pancreatic cancer models in vitro and in vivo. RXC004 effects on immune evasion were assessed in B16F10 immune "cold" and CT26 immune "hot" murine syngeneic models, and in human cell cocultures. RXC004 showed a promising pharmacokinetic profile, inhibited Wnt ligand palmitoylation, secretion, and pathway activation, and demonstrated potent antiproliferative effects in Wnt ligand-dependent (RNF43-mutant or RSPO3-fusion) colorectal and pancreatic cell lines. Reduced tumor growth and increased cancer cell differentiation were observed in SNU-1411 (RSPO3-fusion), AsPC1 and HPAF-II (both RNF43-mutant) xenograft models, with a therapeutic window versus Wnt homeostatic functions. Additional effects of RXC004 on tumor cell metabolism were confirmed in vitro and in vivo by glucose uptake and 18fluorodeoxyglucose-PET, respectively. RXC004 stimulated host tumor immunity; reducing resident myeloid-derived suppressor cells within B16F10 tumors and synergizing with anti-programmed cell death protein-1 (PD-1) to increase CD8+/regulatory T cell ratios within CT26 tumors. Moreover, RXC004 reversed the immunosuppressive effects of HPAF-II cells cocultured with human peripheral blood mononuclear cells, confirming the multiple anticancer mechanisms of this compound, which has progressed into phase II clinical trials. Significance: Wnt pathway dysregulation drives many gastrointestinal cancers; however, there are no approved therapies that target the pathway. RXC004 has demonstrated the potential to block both tumor growth and tumor immune evasion in a genetically defined, clinically actionable subpopulation of Wnt ligand-dependent gastrointestinal cancers. The clinical utility of RXC004, and other Porcupine inhibitors, in such Wnt ligand-dependent cancers is currently being assessed in patient trials.


Assuntos
Neoplasias Colorretais , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Via de Sinalização Wnt , Ligantes , Evasão da Resposta Imune , Leucócitos Mononucleares/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias Colorretais/tratamento farmacológico
4.
Cancer Discov ; 11(10): 2602-2619, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34031121

RESUMO

Identifying strategies to improve the efficacy of immune checkpoint blockade (ICB) remains a major clinical need. Here, we show that therapeutically targeting the COX2/PGE2/EP2-4 pathway with widely used nonsteroidal and steroidal anti-inflammatory drugs synergized with ICB in mouse cancer models. We exploited a bilateral surgery model to distinguish responders from nonresponders shortly after treatment and identified acute IFNγ-driven transcriptional remodeling in responder mice, which was also associated with patient benefit to ICB. Monotherapy with COX2 inhibitors or EP2-4 PGE2 receptor antagonists rapidly induced this response program and, in combination with ICB, increased the intratumoral accumulation of effector T cells. Treatment of patient-derived tumor fragments from multiple cancer types revealed a similar shift in the tumor inflammatory environment to favor T-cell activation. Our findings establish the COX2/PGE2/EP2-4 axis as an independent immune checkpoint and a readily translatable strategy to rapidly switch the tumor inflammatory profile from cold to hot. SIGNIFICANCE: Through performing in-depth profiling of mice and human tumors, this study identifies mechanisms by which anti-inflammatory drugs rapidly alter the tumor immune landscape to enhance tumor immunogenicity and responses to immune checkpoint inhibitors.See related commentary by Melero et al., p. 2372.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Quimioterapia Combinada , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA