RESUMO
PI3Kα, consisting of the p110α isoform of the catalytic subunit of PI 3-kinase (encoded by PIK3CA) and the p85α regulatory subunit (encoded by PI3KR1) is activated by growth factor receptors. The identification of common oncogenic mutations in PIK3CA has driven the development of many inhibitors that bind to the ATP-binding site in the p110α subunit. Upon activation, PI3Kα undergoes conformational changes that promote its membrane interaction and catalytic activity, yet the effects of ATP-site directed inhibitors on the PI3Kα membrane interaction are unknown. Using FRET and Biolayer Interferometry assays, we show that a class of ATP-site directed inhibitors represented by GSK2126458 block the growth factor activated PI3KαWT membrane interaction, an activity dependent on the ligand forming specific ATP-site interactions. The membrane interaction for hot spot oncogenic mutations that bypass normal p85α regulatory mechanisms was insensitive to GSK2126458, while GSK2126458 could regulate mutations found outside of these hot spot regions. Our data show that the effect of GSK126458 on the membrane interaction requires the enzyme to revert from its growth factor activated state to a basal state. We find that an ATP substrate analogue can increase the wild type PI3Kα membrane interaction, uncovering a substrate based regulatory event that can be mimicked by different inhibitor chemotypes. Our findings, together with the discovery of small molecule allosteric activators of PI3Kα illustrate that PI3Kα membrane interactions can be modulated by factors related to ligand binding both within the ATP site and at allosteric sites.
RESUMO
The natural product (-)-TAN-2483B is a fungal secondary metabolite which displays promising anti-cancer and immunomodulatory activity. Our previous syntheses of (-)-TAN-2483B and sidechain analogues uncovered inhibitory activity against Bruton's tyrosine kinase (Btk), an established drug target for various leukaemia and immunological diseases. A structure-based computational study using ensemble docking and molecular dynamics was performed to determine plausible binding modes for (-)-TAN-2483B and analogues in the Btk binding site. These hypotheses guided the design of new analogues which were synthesised and their inhibitory activities determined, providing insights into the structural determinants of the furopyranone scaffold that confer both activity and selectivity for Btk. These findings offer new perspectives for generating optimised (-)-TAN-2483B-based kinase inhibitors for the treatment of leukaemia and immunological diseases.
Assuntos
Tirosina Quinase da Agamaglobulinemia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Humanos , Sítios de Ligação , Fungos , Produtos Biológicos/química , Produtos Biológicos/farmacologiaRESUMO
BACKGROUND: The PI 3-kinase (PI3K) pathway has been implicated as a target for melanoma therapy. METHODS: Given the high degree of genetic heterogeneity in melanoma, we sought to understand the breadth of variation in PI3K signalling in the large NZM panel of early passage cell lines developed from metastatic melanomas. RESULTS: We find the vast majority of lines show upregulation of this pathway, and this upregulation is achieved by a wide range of mechanisms. Expression of all class-IA PI3K isoforms was readily detected in these cell lines. A range of genetic changes in different components of the PI3K pathway was seen in different lines. Coding variants or amplification were identified in the PIK3CA gene, and amplification of the PK3CG gene was common. Deletions in the PIK3R1 and PIK3R2 regulatory subunits were also relatively common. Notably, no genetic variants were seen in the PIK3CD gene despite p110δ being expressed in many of the lines. Genetic variants were detected in a number of genes that encode phosphatases regulating the PI3K signalling, with reductions in copy number common in PTEN, INPP4B, INPP5J, PHLLP1 and PHLLP2 genes. While the pan-PI3K inhibitor ZSTK474 attenuated cell growth in all the lines tested, isoform-selective inhibition of p110α and p110δ inhibited cell growth in only a subset of the lines and the inhibition was only partial. This suggests that functional redundancy exists between PI3K isoforms. Furthermore, while ZSTK474 was initially effective in melanoma cells with induced resistance to vemurafenib, a subset of these cell lines concurrently developed partial resistance to PI3K inhibition. Importantly, mTOR-selective or mTOR/PI3K dual inhibitors effectively inhibited cell growth in all the lines, including those already resistant to BRAF inhibitors and ZSTK474. CONCLUSIONS: Overall, this indicates a high degree of diversity in the way the PI3K pathway is activated in different melanoma cell lines and that mTOR is the most effective point for targeting the growth via the PI3K pathway across all of these cell lines.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Neoplasias Cutâneas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Humanos , Isoenzimas , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Triazinas/uso terapêutico , Regulação para Cima , Vemurafenib/uso terapêuticoRESUMO
The expression of tryptophan catabolising enzyme indoleamine 2,3-dioxygenase 1 (IDO1) or tryptophan 2,3-dioxygenase 2 (TDO2) in cancers is associated with suppressed immunity and poor patient prognosis. Results from human clinical trials of IDO1 inhibitors have been disappointing. There is now a strong interest in the development of TDO2-selective or dual IDO1/TDO2 inhibitors that may surpass IDO1 inhibitors by providing broader efficacy and blocking constitutively-expressed hepatic TDO2. To expedite the discovery of novel TDO2-specific and dual inhibitors, an assay that enabled the efficient and accurate measurement of the inhibitory activity of compounds against both IDO1 and TDO2 enzymes, concurrently in the same experiment was established to screen 5,682 compounds that included the National Cancer Institute Diversity set 5, for inhibition of IDO1 and TDO2 activity. This screen identified 82 compounds that inhibited either IDO1, TDO2 or both enzymes > 50% at 20 µM. Thirty Pan Assay Interference compounds were removed from the list and the IC50 of the remaining 52 compounds against IDO1 and TDO2 was subsequently determined using the newly-developed concurrent assay. Ten compounds were confirmed as dual IDO1/TDO2 inhibitors having IC50 values under 50 µM against both enzymes and within 2-fold of each other. Six compounds with IC50 values between 1.39 and 8.41 µM were identified as potential TDO2-selective leads. The use of this concurrent protocol is anticipated to expedite the discovery of novel leads for dual and selective inhibitors against IDO1 and or TDO2 and speed the evaluation of novel analogues that will ensue.
Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Inibidores Enzimáticos/química , Humanos , Reprodutibilidade dos Testes , Relação Estrutura-AtividadeRESUMO
Phosphoinositide 3-kinase ß (PI3Kß) is regulated by receptor tyrosine kinases (RTKs), G protein-coupled receptors (GPCRs), and small GTPases such as Rac1 and Rab5. Our lab previously identified two residues (Gln596 and Ile597) in the helical domain of the catalytic subunit (p110ß) of PI3Kß whose mutation disrupts binding to Rab5. To better define the Rab5-p110ß interface, we performed alanine-scanning mutagenesis and analyzed Rab5 binding with an in vitro pulldown assay with GST-Rab5GTP Of the 35 p110ß helical domain mutants assayed, 11 disrupted binding to Rab5 without affecting Rac1 binding, basal lipid kinase activity, or Gßγ-stimulated kinase activity. These mutants defined the Rab5-binding interface within p110ß as consisting of two perpendicular α-helices in the helical domain that are adjacent to the initially identified Gln596 and Ile597 residues. Analysis of the Rab5-PI3Kß interaction by hydrogen-deuterium exchange MS identified p110ß peptides that overlap with these helices; no interactions were detected between Rab5 and other regions of p110ß or p85α. Similarly, the binding of Rab5 to isolated p85α could not be detected, and mutations in the Ras-binding domain (RBD) of p110ß had no effect on Rab5 binding. Whereas soluble Rab5 did not affect PI3Kß activity in vitro, the interaction of these two proteins was critical for chemotaxis, invasion, and gelatin degradation by breast cancer cells. Our results define a single, discrete Rab5-binding site in the p110ß helical domain, which may be useful for generating inhibitors to better define the physiological role of Rab5-PI3Kß coupling in vivo.
Assuntos
Neoplasias da Mama/patologia , Invasividade Neoplásica , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Sítios de Ligação , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quimiotaxia , Gelatina/metabolismo , Células HEK293 , Humanos , Espectrometria de Massas/métodos , Mutação , Fosfatidilinositol 3-Quinase/genética , Ligação ProteicaRESUMO
A novel peptide stapling method effected by a double thiol-ene reaction between two cysteine residues and a divinyl diester to access stapled peptides with enhanced cell permeability is reported. This diverse chemical tool kit provides facile access to stapled peptides with varying bridge lengths. Stapled Axin mimetics were synthesised by using this stapling method resulting in improved α-helicity relative to the unstapled peptide. Cell penetrating stapled analogues of the SIGK peptide that targets the protein-protein interaction hotspot of Gßγ proteins were also synthesised that exhibited a moderate increase in α-helicity and were cell permeable. This chemoselective peptide stapling method is highly amenable as a facile method to easily modify synthetic α-helical peptides to target intracellular proteins.
Assuntos
Cisteína/química , Ésteres/química , Peptídeos/química , Compostos de Sulfidrila/química , Estrutura Secundária de ProteínaRESUMO
Gene-directed enzyme prodrug therapy (GDEPT) uses tumor-tropic vectors to deliver prodrug-converting enzymes such as nitroreductases specifically to the tumor environment. The nitroreductase NfsB from Escherichia coli (NfsB_Ec) has been a particular focal point for GDEPT and over the past 25 years has been the subject of several engineering studies seeking to improve catalysis of prodrug substrates. To facilitate clinical development, there is also a need to enable effective non-invasive imaging capabilities. SN33623, a 5-nitroimidazole analogue of 2-nitroimidazole hypoxia probe EF5, has potential for PET imaging exogenously delivered nitroreductases without generating confounding background due to tumor hypoxia. However, we show here that SN33623 is a poor substrate for NfsB_Ec. To address this, we used assay-guided sequence and structure analysis to identify two conserved residues that block SN33623 activation in NfsB_Ec and close homologues. Introduction of the rational substitutions F70A and F108Y into NfsB_Ec conferred high levels of SN33623 activity and enabled specific labeling of E. coli expressing the engineered enzyme. Serendipitously, the F70A and F108Y substitutions also substantially improved activity with the anticancer prodrug CB1954 and the 5-nitroimidazole antibiotic prodrug metronidazole, which is a potential biosafety agent for targeted ablation of nitroreductase-expressing vectors.
Assuntos
Monitoramento de Medicamentos/métodos , Proteínas de Escherichia coli/metabolismo , Etanidazol/análogos & derivados , Hidrocarbonetos Fluorados/metabolismo , Imagem Molecular/métodos , Nitroimidazóis/uso terapêutico , Nitrorredutases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Pró-Fármacos/uso terapêutico , Antineoplásicos/uso terapêutico , Técnicas Biossensoriais/métodos , Hipóxia Celular/fisiologia , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Etanidazol/química , Etanidazol/metabolismo , Terapia Genética/métodos , Células HCT116 , Humanos , Hidrocarbonetos Fluorados/química , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Nitroimidazóis/farmacologia , Nitrorredutases/genética , Pró-Fármacos/metabolismo , Engenharia de ProteínasRESUMO
The proteins Orai1 and STIM1 control store-operated Ca2+ entry (SOCE) into cells. SOCE is important for migration, invasion and metastasis of MDA-MB-231 human triple negative breast cancer (TNBC) cells and has been proposed as a target for cancer drug discovery. Two hit compounds from a medium throughput screen, displayed encouraging inhibition of SOCE in MDA-MB-231 cells, as measured by a Fluorescence Imaging Plate Reader (FLIPR) Ca2+ assay. Following NMR spectroscopic analysis of these hits and reassignment of their structures as 5-hydroxy-5-trifluoromethylpyrazolines, a series of analogues was prepared via thermal condensation reactions between substituted acylhydrazones and trifluoromethyl 1,3-dicarbonyl arenes. Structure-activity relationship (SAR) studies showed that small lipophilic substituents at the 2- and 3-positions of the RHS and 2-, 3- and 4-postions of the LHS terminal benzene rings improved activity, resulting in a novel class of potent and selective inhibitors of SOCE.
Assuntos
Bloqueadores dos Canais de Cálcio/química , Proteína ORAI1/antagonistas & inibidores , Pirazóis/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Proteína ORAI1/metabolismo , Análise Serial de Proteínas , Pirazóis/metabolismo , Pirazóis/farmacologia , Espectrometria de Fluorescência , Relação Estrutura-AtividadeRESUMO
Phosphoinositide 3-kinases (PI3Ks) are major regulators of many cellular functions, and hyperactivation of PI3K cell signalling pathways is a major target for anticancer drug discovery. PI3Kα is the isoform most implicated in cancer, and our aim is to selectively inhibit this isoform, which may be more beneficial than concurrent inhibition of all Class I PI3Ks. We have used structure-guided design to merge high-selectivity and high-affinity characteristics found in existing compounds. Molecular docking, including the prediction of water-mediated interactions, was used to model interactions between the ligands and the PI3Kα affinity pocket. Inhibition was tested using lipid kinase assays, and active compounds were tested for effects on PI3K cell signalling. The first-generation compounds synthesized had IC50 (half maximal inhibitory concentration) values >4â µM for PI3Kα yet were selective for PI3Kα over the other Class I isoforms (ß, δ and γ). The second-generation compounds explored were predicted to better engage the affinity pocket through direct and water-mediated interactions with the enzyme, and the IC50 values decreased by â¼30-fold. Cell signalling analysis showed that some of the new PI3Kα inhibitors were more active in the H1047R mutant bearing cell lines SK-OV-3 and T47D, compared with the E545K mutant harbouring MCF-7 cell line. In conclusion, we have used a structure-based design approach to combine features from two different compound classes to create new PI3Kα-selective inhibitors. This provides new insights into the contribution of different chemical units and interactions with different parts of the active site to the selectivity and potency of PI3Kα inhibitors.
Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Ligação Proteica , Conformação ProteicaRESUMO
The Orai1 Ca2+ permeable ion channel is an important component of store operated Ca2+ entry (SOCE) in cells. It's over-expression in basal molecular subtype breast cancers has been linked with poor prognosis, making it a potential target for drug development. We pharmacologically characterised a number of reported inhibitors of SOCE in MDA-MB-231 breast cancer cells using a convenient Fluorescence Imaging Plate Reader (FLIPR) assay, and show that the rank order of their potencies in this assay is the same as those reported in a wide range of published assays. The assay was also used in a screening project seeking novel inhibitors. Following a broad literature survey of classes of calcium channel inhibitors we used simplified ligand structures to query the ZINC on-line database, and following two iterations of refinement selected a novel Orai1-selective dichlorophenyltriazole hit compound. Analogues of this were synthesized and evaluated in the FLIPR assay to develop structure-activity relationships (SAR) for the three domains of the hit; triazole (head), dichlorophenyl (body) and substituted phenyl (tail). For this series, the results suggested the need for a lipophilic tail domain and an out-of-plane twist between the body and tail domains.
Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Proteína ORAI1/antagonistas & inibidores , Bloqueadores dos Canais de Cálcio/síntese química , Linhagem Celular Tumoral , Bases de Dados de Compostos Químicos , Estabilidade de Medicamentos , Fluorescência , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/farmacologiaRESUMO
Replacement of one of the morpholine groups of the phosphatidylinositol 3-kinase (PI3K) inhibitor ZSTK474 (1) with sulfonamide containing substituents produced a new class of active and potent PI3Kα inhibitors. Solubility issues prevented all but the 6-amino derivative 17 from being evaluated in vivo, but the clear activity of this compound demonstrated that this class of PI3K inhibitor shows great promise.
Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Triazinas/química , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Estrutura Molecular , Solubilidade , Sulfonamidas/química , Triazinas/farmacologiaRESUMO
GluN1 is a mandatory component of N-methyl-D-aspartate receptors (NMDARs) best known for their roles in the brain, but with increasing evidence for relevance in peripheral tissues, including platelets. Certain anti-GluN1 antibodies reduce brain infarcts in rodent models of ischaemic stroke. There is also evidence that human anti-GluN1 autoantibodies reduce neuronal damage in stroke patients, but the underlying mechanism is unclear. This study investigated whether anti-GluN1-mediated neuroprotection involves inhibition of platelet function. Four commercial anti-GluN1 antibodies were screened for their abilities to inhibit human platelet aggregation. Haematological parameters were examined in rats vaccinated with GluN1. Platelet effects of a mouse monoclonal antibody targeting the glycine-binding region of GluN1 (GluN1-S2) were tested in assays of platelet activation, aggregation and thrombus formation. The epitope of anti-GluN1-S2 was mapped and the mechanism of antibody action modelled using crystal structures of GluN1. Our work found that rats vaccinated with GluN1 had a mildly prolonged bleeding time and carried antibodies targeting mostly GluN1-S2. The monoclonal anti-GluN1-S2 antibody (from BD Biosciences) inhibited activation and aggregation of human platelets in the presence of adrenaline, adenosine diphosphate, collagen, thrombin and a protease-activated receptor 1-activating peptide. When human blood was flowed over collagen-coated surfaces, anti-GluN1-S2 impaired thrombus growth and stability. The epitope of anti-GluN1-S2 was mapped to α-helix H located within the glycine-binding clamshell of GluN1, where the antibody binding was computationally predicted to impair opening of the NMDAR channel. Our results indicate that anti-GluN1-S2 inhibits function of human platelets, including dense granule release and thrombus growth. Findings add to the evidence that platelet NMDARs regulate thrombus formation and suggest a novel mechanism by which anti-GluN1 autoantibodies limit stroke-induced neuronal damage.
Assuntos
Autoanticorpos/sangue , Plaquetas/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Trombose/genética , Animais , Humanos , Masculino , Ratos , Ratos WistarRESUMO
BACKGROUND: Tryptophan catabolism along the kynurenine pathway is associated with a number of pathologies including cataract formation and cancer. Whilst the chemical reactions of kynurenine are well studied, less is known about the reactivity of its precursor N-formylkynurenine (NFK). We previously reported the generation of a strong fluorophore in an aqueous reaction of NFK with piperidine, and herein we describe its structure and mechanism of formation. METHODS: Compounds were identified using NMR, mass and UV spectroscopic techniques. The products from the reaction of amines with amino acids were quantified using HPLC-MS. RESULTS: The novel fluorophore was identified as a tetrahydroquinolone adduct (PIP-THQ), where piperidine is N-formylated and attached at its 2-position to the quinolone. NFK is initially deaminated to generate an unsaturated enone, which forms an adduct with piperidine and is subsequently converted into the fluorophore. Testing of a variety of other secondary amines showed that only cyclic amines unsubstituted at both positions adjacent to nitrogen could form fluorophores efficiently. The amino acids tryptophan and kynurenine, which lack the formamide group do not form such fluorophores. CONCLUSIONS: NFK forms fluorophores in a not previously published reaction with cyclic amines. GENERAL SIGNIFICANCE: Our study is the first to provide evidence for concurrent transamidation and substitution at the 2-position of a cyclic amine occurring under moderately-heated aqueous conditions with no added catalysts. The high reactivity of NFK demonstrated here could result in formation of biologically relevant metabolites yet to be characterised.
Assuntos
Aminas/metabolismo , Corantes Fluorescentes/metabolismo , Cinurenina/análogos & derivados , Triptofano/metabolismo , Cinurenina/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de MassasRESUMO
The discovery of genetic drivers of lung cancer in patient sub-groups has led to their use as predictive biomarkers and as targets for selective drug therapy. Some of the most important lung cancer drivers are mutations in the EGFR gene, for example, the exon 19 deletions and the L858R variant that confer sensitivity to the front line drugs erlotinib and gefitinib; the acquired T790M variants confer drug resistance and a poor prognosis. A challenge then in targeting EGFR is to produce drugs that inhibit both sensitising variants and resistance variants, leaving wild type protein in healthy cells unaffected. One such agent is AstraZeneca's "breakthrough" AZD9291 molecule that shows a 200-fold selectivity for T790M/L858R over wild type EGFR. Our X-ray crystal structure reveals the binding mode of AZD9291 to the kinase domain of wild type EGFR.
Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/metabolismo , Compostos de Anilina/metabolismo , Cristalografia por Raios X , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/ultraestrutura , Cloridrato de Erlotinib/farmacologia , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Ligação Proteica/fisiologia , Quinazolinas/farmacologiaRESUMO
A novel series of TGX-221 analogues was prepared and tested for their potency against the p110α, p110ß, and p110δ isoforms of the PI3K enzyme, and in two cellular assays. The biological results were interpreted in terms of a p110ß comparative model, in order to account for their selectivity towards this isoform. A CH2NH type linker is proposed to allow binding into the specificity pocket proposed to accommodate the high p110ß-selectivity of TGX-221, although there was limited steric tolerance for substituents on the pendant ring with the 2-position most favourable for substitution.
Assuntos
Antineoplásicos/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Subunidades Proteicas/antagonistas & inibidores , Pirimidinonas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe Ia de Fosfatidilinositol 3-Quinase/química , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Morfolinas/síntese química , Inibidores de Proteínas Quinases/síntese química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pirimidinonas/síntese química , Relação Estrutura-AtividadeRESUMO
The PI3K (phosphoinositide 3-kinase) p110α isoform is activated by oncogenic mutations in many cancers. This has stimulated intense interest in identifying inhibitors of the PI3K pathway as well as p110α-selective inhibitors, and understanding the mechanisms underlying activation by the oncogenic mutations. In the present article, we review recent progress in the structure and function of the p110α enzyme and two of its most common oncogenic mutations, the development of isoform-selective inhibitors, and p110α pharmacology.
Assuntos
Fosfatidilinositol 3-Quinases/química , Animais , Antineoplásicos/farmacologia , Domínio Catalítico , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/fisiologia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 QuinaseRESUMO
Two novel scaffolds, 4-pyridylanilinothiazoles (PAT) and 3-pyridylphenylsulfonyl benzamides (PPB), previously identified as selective cytotoxins for von Hippel-Lindau-deficient Renal Carcinoma cells, were used as templates to prepare affinity chromatography reagents to aid the identification of the molecular targets of these two classes. Structure-activity data and computational models were used to predict possible points of attachment for linker chains. In the PAT class, Click coupling of long chain azides with 2- and 3-pyridylanilinothiazoleacetylenes gave triazole-linked pyridylanilinothiazoles which did not retain the VHL-dependent selectivity of parent analogues. For the PPB class, Sonagashira coupling of 4-iodo-(3-pyridylphenylsulfonyl)benzamide with a propargyl hexaethylene glycol carbamate gave an acetylene which was reduced to the corresponding alkyl 3-pyridylphenylsulfonylbenzamide. This reagent retained the VHL-dependent selectivity of the parent analogues and was successfully utilized as an affinity reagent.
Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Desenho de Fármacos , Neoplasias Renais/tratamento farmacológico , Piridinas/farmacologia , Sulfonas/farmacologia , Tiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzamidas/síntese química , Benzamidas/química , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia de Afinidade , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Renais/patologia , Modelos Moleculares , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Sulfonas/síntese química , Sulfonas/química , Tiazóis/síntese química , Tiazóis/químicaRESUMO
High-throughput screening of a small-molecule library identified a 5-triazolo-2-arylpyridazinone as a novel inhibitor of the important glycolytic enzyme 6-phosphofructo-2-kinase/2,6-bisphosphatase 3 (PFKFB3). Such inhibitors are of interest due to PFKFB3's control of the important glycolytic pathway used by cancer cells to generate ATP. A series of analogues was synthesized to study structure-activity relationships key to enzyme inhibition. Changes to the triazolo or pyridazinone rings were not favoured, but limited-size substitutions on the aryl ring provided modest increases in potency against the enzyme. Selected analogues and literature-described inhibitors were evaluated for their ability to suppress the glycolytic pathway, as detected by a decrease in lactate production, but none of these compounds demonstrated such suppression at non-cytotoxic concentrations.
Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fosfofrutoquinase-2/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos/métodos , Glicólise/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Piridazinas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-AtividadeRESUMO
Inhibitors of the aldo-keto reductase enzyme AKR1C3 are of interest as potential drugs for leukemia and hormone-related cancers. A series of non-carboxylate morpholino(phenylpiperazin-1-yl)methanones were prepared by palladium-catalysed coupling of substituted phenyl or pyridyl bromides with the known morpholino(piperazin-1-yl)methanone, and shown to be potent (IC50â¼100nM) and very isoform-selective inhibitors of AKR1C3. Lipophilic electron-withdrawing substituents on the phenyl ring were positive for activity, as was an H-bond acceptor on the other terminal ring, and the ketone moiety (as a urea) was essential. These structure-activity relationships are consistent with an X-ray structure of a representative compound bound in the AKR1C3 active site, which showed H-bonding between the carbonyl oxygen of the drug and Tyr55 and His117 in the 'oxyanion hole' of the enzyme, with the piperazine bridging unit providing the correct twist to allow the terminal benzene ring to occupy the lipophilic pocket and align with Phe311.
Assuntos
3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , 3-Hidroxiesteroide Desidrogenases/química , 3-Hidroxiesteroide Desidrogenases/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase , Domínio Catalítico , Técnicas de Química Sintética , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Ligação de Hidrogênio , Hidroxiprostaglandina Desidrogenases/química , Hidroxiprostaglandina Desidrogenases/metabolismo , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Morfolinas/química , Relação Estrutura-AtividadeRESUMO
Screening of a fragment library identified 2-hydrazinobenzothiazole as a potent inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme expressed by tumours that suppresses the immune system. Spectroscopic studies indicated that 2-hydrazinobenzothiazole interacted with the IDO1 haem and in silico docking predicted that the interaction was through hydrazine. Subsequent studies of hydrazine derivatives identified phenylhydrazine (IC50=0.25 ± 0.07 µM) to be 32-fold more potent than 2-hydrazinobenzothiazole (IC50=8.0 ± 2.3 µM) in inhibiting rhIDO1 and that it inhibited cellular IDO1 at concentrations that were noncytotoxic to cells. Here, phenylhydrazine is shown to inhibit IDO1 through binding to haem.